UTRCDUCTICN: The T-1B Nevsletter began in the fall of 1064 as a ree aitof seferal letters and a visit with Dtck Cavin in Dallaso Dick sadeasentlally "kicked ofen the T-18 Mutual Ad Society with his fine article in the 1963 sfCRT AVIATICITentitIse "Reflections From Rockford" An which he told bocut builatne the Twis ruselage in just $3-1 / 2$ dayso Bet ve felt that therevas a real need zor "house organ to circulate Wo the T-13 builders. BFCh AVTATXN is gine for reaching the general IhA body but the tima lag in ioo treat and you don thave the editorial freedom that you haresman informal nemmettors. So, Dick and I agreed to publish a nevoletter for the enchatue use of T-IS builders with the editing and puhlishine being done elternately in NY and Teras. Thi continued for the lirst clye iceues, Then family illnese and mork damands made it impossible for Dick to centraue so 1 have publishpd all subsequent issues, now numbering 44 (in 1276).

The first isbues were published with strictly volunteer help but recently, has been necessary to hire the typing done. The materials and postae costs herb betn patd for by donations from T-18 bullders now numbering over 1200. Artackes and tipg have been obtained from the builders and throuch peducial intervevis which I have been able to mate while on comrany bustneas traps.

Since the master stencilo for the first 12 Lsoues are no longer usable, new stencilo have been cut ustag axeerpts from these soueso Much of the material has been onitted since it no loneer ls applicable,

RIVETS: Apparently some of the nevcomars are a little confused apout the use of Hi-Shear rivetc and Fop rivets. Basically Mi-chearsare used jnctead of boitog as thay are lititer and $\angle n$ some other respects, superiore they can be nostalled vexy sacily, usine only a hamerer and the ifttie installation tool. The Fhitrey punch set, the \#f Uro is optaynable from the thitney Tool toon Rocimord, illo You ohould order extra \#Vo puncherg with and withott the little "nib". AEAAn, for the beeinner, you camot put a $1 / 0^{\prime \prime}$ rivet in a $1 / 0^{\text {ti hole, It takes a. \#30 }}$ hole, if you aimple the skin around a l/s" hole the hole vill enlerse enouch chat a $1 / 8^{\prime \prime}$ rivet wilh go in incldentally, it is aecepted practate to dmile the lightor gauge skin and counteroink the thicker mascrial (040) ofy you plan to iluch rivety you may want to get a set of dimple dies for the Whithey puncho They are needed lor dimpling rion and frames but do not co an acceptable job ta external skinso Thate a dimpline tool ac deceribed on pace 16)。

USLIG TEN SES: It takeo a littlépractice and enh11, bellevelt or not, to Forarly use the. Whitney duplicator punch. Hold it besween the thumb and middle finter and sort ot rockit in the hole Don't try to puoh 1 o strateht dewn tito the hole. Uongt vorko Tap the punch vith a nammer, not too hard, Be sure the punch in in the hole botoro tappinc, do ac to avoid damace to template. Aboolutely do not punch or drill through the template. Always voe the punch vith the iitto center nib to tranofer the holo canterd, then remove template
from worksheet before you actually punch out or drill holes．Elace rmilto from workheet before you actually punch out or drill holes． Ftace your trancifer strips underneath bulthead rivet lines before you drill or punch holes．Take care to keep yeur drill at eoo to sheet and In case of fudelage sides，drill both sidesend trancfer strip at one time Make a simple little steady rest for your drilly using scrap yood，so you cankeep drill vertical．To transfer the hole pattern from the ohins to the bulkhéde the important thine is to VERY cocurately locate a startinc roint．We cannot transfer hole patterns at pointo where bulkheads are jogeled．as this would caume mismatch． I chose the piret rivet hole ebove Wo 42 an my＂anchor＂hole．On my form blroks，I drilled a tiny hole at thiepoint I tapped a wire brad lieht y，throtich this hole，makinga tiny mark on frameso on a penciled river hole center line，I punched the rivet hole Next，a rivet dovel was used and skin trancfer，etrip and irame were pinned to－ cether．The hele pattern was then trancerred with nibped punch． Sounds complicated，but it eallyion to Transier strips should be labeled as to＂up＂or＂out＂etco and extreme care should be used so that transier stripe are almayo turned the same wayo THIMK．

Leave the＂onare focket＂area of the bottom sheet in for alienment Of formard floor．Importantl After alienment，drillineg clecoing， cut it out To uce rivet as a dovel thróuch vorlscheet，put head on bottom，and secure on toz with Tiny C clamp．

These templeteo are a real privilece flease shov your appreciatio by takinc painstakincecre or them。 Take care of them not as．yaur very own butmore like they beloneed to your boso when ohipping； oo11．them carefully，tie or tape securely and either put in small orate or wap several layess of cardboerd around themand see that odees are protected agoinst roush handifng l mould like fo bepmformed of condition you receive templates．

SIDE SIIH SILICE：If you decide not to purchase one of the extra Iaree sheeto that make 2 fucelage sides，make your smifee juot aft of Ste。 179.2007 ，usinc either an o 032 or o 040 strip 2.5^{27} vide as a doubler．Tour rows of AN426 AD 4 rivets are usedo Rivet centers should be $25^{\text {s }}$ irom sheet odeeso Rivet spacing is about one inch．Do not continue the doubler under the anele at Wr42。

FCRM BLCCHS：Have had a conoiderable number or you ask＂What material do I use to make form blocks out of？＂I used a select erade of maple for all my small perts（ribs etco）．I uced $3 / 4^{\text {tr }}$ fir plywood for the fusetaee bulkheads．I have heard os Bonefler beine recommended，but also know it is hord to find and very expensive．Some builde．sused a．vood chip composition board for furelare frame forms and vere pleased with it．Actually，most anything vill do is it vont eplinter bodly．And of course，moat of you know thet it is important to mako all form blockeln duplicate，oc you must AXVAXS have a alamp to hold your block－metal－block sandvich tocethor tichtyy whale forminge Metal will creep from formine stress if not tichto ALso use index pins like

EXCERFTS FMM T-1S NEVSEETTERS 1-12 Eage 3 Retyped 26 Nov 76
clevis pins or small belts. Eut pins completely through the "sendyleh These index, or tooline pins are important, as they serve to both allets parts and rectrain them. Fut them near a corner so the index holes. can be punched rather than drilled.

TCORS: I would like to hichly rocommend another tool that i have. It is the Mead Bandsander. I call it indiopensable - almost amust for a metal aircraft builder It looks like a small band sav and it demurrs. sand. shapes, profilec, etc. Uses $I^{\prime \prime} \times 42^{\prime \prime}$ belts that can be torn to K or vidths for mall areas. It is used in every aircraft factory and is tremendous for sandine the edees of aluminum partse Herep something else that will save you meny hours of tedious labor. You can wite Mead Specialticco Chicaro, Ill. They are priced at $\$ 37.05$ for the industrial model with ball bearincs and $\$ 27.95$ for the home vorkshop model with oillte bearince. Van White, $15 I 26$ th St., Lubbock, Texac hos a dealerohip for thom.

If you want to cav aluminum, Sears hes a blade (both $6^{\prime \prime}$ and $9^{\prime \prime}$) that docs a beautiful job (about $\$ 5_{0}$). It iotheir Kremedge NonFerrous cutting blade. If you have a bandeaw, get skipetooth blade for best results, althoufh you cen uce ordinary wood cuttine blades if you use a wax or crease otick to lubricete them and keep the teeth from cloesine.

MAKING FI YiNGS: You can moke your own fittinco or alyminum plate quite eacily Saw them oversize and sand or file down to your seribe linc. An ordinary disk oander vorke fine. I uced a rubber-backed 5" one in areap that couldn't eet to with cander, folleved by sandine with the little Mead bandcander. If you turn the rotary files very fast they won't chetter. Take very lieht cuts, toc. Final sandinge is by hand using vet-or-dry sandpaper in progreociveIy finer Cradeso. Sprinkie a little Don-Ami on the sandpaper. This Ue toothpasto) mokec a fine licht abrasive. If you vant to act fancy and do real first clacs vork, buff your fittince with a cloth bufinne whecl, usinc emery buffine compound, workinc down to tripoli or jevelees rouce for a true mirror finish that rivala chrome plate in brilliance. Actually you chould alvayc finish ANY aluminum edee to as fine a finich as poseible, so ec to eliminate otartine places for crackso This cots very important on thin oheot parts (ribs, etce) thet do more floxinge ALVAYS finish the edge of sheet parts to the extent that trare are nu viaible scratches or nicks. This also applies to deburrine holede Alvays deburr holes bexore dimpline, at the formine strese of dimpline may possibly crack lisht skin. If this happems you'Il have to drill it out and use an overaize rivet.

FCRMIVG RIBS FCR THE T-18
by
2r. B. John Shinn
 ote, vith a sort of envioue ave. I dreamed of buildinemy own all metal plane, but obviousily the coct of special tooline vould be too
high and havine thines like ribe hydroprese formed would also be too mponoive．

But，then came the eexies of SFCRT AVIATICH articled on the T－10． Mr．Thorp made it sound like an ordinary guy could make acceptable ribs himself with only a soft hammer，a buckine bax and some wood form block Beoideo that he mentioncd an alloy，60sir4，which could be formed withe out annealing．To meg eli alrcraft sheet aluminum had been $24 S T$ （2024T4）which required conciderable care even in bending straight Ine corners let alone compound curves．The interect mounted to the point that I vas nentally strotchine ribo with cace．I decided I ${ }^{2}$ just have to build the $\mathrm{T}-18$ ，

Although the azticle in siCRTAVIATICN（Building the T－18＂－Fart 3，July 14,1962 ）was vell written I feel that a look at my if forming experiences mieht be helpiul to those who are also now＂tin benders＂。

Bo FCRM BLCCKS－After reading Fart 3 in Therp ${ }^{2}$ c articlea，checking prices on ferm block material（maple，birch，birch plywood，tempered masonite，otco）I decided on birch．It is relatively low in price， has a fine grained surface for non－bumpy layout，and does not split out under heavy poundine like plywood．Beoides that，it comes in Widths（ $6^{\prime \prime}$ to $9^{\prime \prime}$ ）which are more manageable than large sheets of plywood．（Thicknees should be $3 / 4^{\prime \prime}$ or greater to ailow forming a good ilange out to $5 / 8^{\circ}$ ．）

The complete airfoil template vas laid out on，040\％aluminum and $025^{\prime \prime}$（The thickness of tho rib material）was trimmed off the complete perimeter of the template．Several＇齐 indexine holee vere prached to alien noce and center rib sectiono．This alrfoil template vas laid on top on two omooth $3 / 4^{\text {th }}$ birch boards and the indering holes vere drilled through boarde simultaneously．A couple of zu metal dovel ping held the template on one board ror the laycut markineo A oharp knife vac uced to trace arcund the template．Then a pencil （preferably carpenter ${ }^{\circ} \mathrm{s}$ ）charpened to a Iine wedee shape．tras traced liehtly through the knife eroove．This made an accurate layout inne which was easy tc saw along．The template vas＂rlopped over，doveled， and traced by knile and pencil on the other piece of birch for the ＂oppoeste hand＂rib。

For the savinc process it vas discovered that the bandsav vas the moct practical By carcfully stayine about $1 / 3 h^{2}$ of pn inch wide with this cut it vas posoible to avoid excessive sanding time later． The rouehed cut form blocks vere then onnded to the center of the knife Erosve outline．A canding disc nounted in a table say yonks vell for this．The disc vas tilted so that it undercuts the form block to compencate for the opring beck of the rib aptcr rominge About 3° vas uced rew＂straight＂sectiono whilo a 5° tilt was used for the more highly curved nose or the rib．（It ia important to note that it io much easica to make this spring becte allowance vith the initial banding than it ia tc firat oand to the lino ferpondicularly and then try to add the 3° to 5° undercut vithout over－whootine the math，

The edged of the form block were rounded te este the proper bend radiuc of 3／32＂．It wan found that a small stanley＂burform＂falo
made cick work of this with only a minor amount of sandpaperine to smoorin it cut.
O. RIB BLAIMS - For quick layout of the rib blanks a 040 metal rib Wlank template vas made for the nose ribe anc the center section ribso (For the reot of thisurticle ve will concentrate on the nose rib fabrication since it is the mere difficult). The airfoil template was lad on afiece of scrap aluminum and traced arcund for the nose rib section. A pair of dividers set for 7/8" vas used. (Dick Cavin's idea ce usine a $3 / 4^{\prime \prime}$ radius washer for markine soundo better). By trimine this metal to the outer mark a $7 / 0^{\prime \prime}$ ilange vas left all around this nooe rib blenk. This blank was agein placed under the airfoil secticn and the indexing (locating) holes punched through. The cutout at the front of the nose rib was made in this nose rib bonk template. It is otrongly recommended that tho cutmout in the actual ribe be made only acter the rib had been formed. If it is made before forming it is almoet impoocible to prevent sharp double-beck creases at the front edges of the nose rib.

Holee vere aloo punched through thio template for the corner relief (as indicated on the printo) for the $-1,-3$, and -4 nose ribo. The -1 and -2 vere clcoe enouch alike to use the ome relies holes.
D. CUTPIIG CJT BLANKS - The $3^{2} \times 12^{\prime}$ shcet of $6061 T 4$ vas unrolied on a rug in the family rocm (to prevent ocratches) and a fev quick trial and error layouts with the rib blank templates producod the moot economicel laycut. A "grease pencil" vas usedfor this sincelthas enough contrast to be visible and is easily viped off when desired. Since the ribc wene to be trimmed after forming and generous flanges vere allowed it vas not necesoary to malse rrecision laycut markemjust a quick trace mound the rib blank vith the grease pencil was all. Again, do not mark in the nese cut out,

For cuttine up the sheet peovie have used a skill sav, a sheet metal . shear, and other such approaches. I found thet the 6061 T4 sheet vec cut up with least vecte anci leact scratchine by using a reguler fair of otroight sheet metal chears. The two sides of the cheared piecemere opread arart (by one hand and one foot) oo the shears did not bind. This resulted in a olicht curvature of the nem blank but thio vas incignificant when comrared to the stretchine it was soon to undoreo, The blank were then placed under the rib-blank template and the locatine holes were punched, and the nose cut vas scribed lichtly on the blank but not cut out. The flance around the very tip of the nope vas trimmed to a ${ }^{\frac{1}{2}}$ width to minimize wrinkles in this hich otretch area. The appropriate relies holec vere also punched. The tile of rib blanks vac ready for the forming operation.
E. CLAMLIG - Tho metal blanks for the nose rib vere incerted between the two rib form blocks and in $^{\prime \prime}$ dovels were fushed through those two locating holes in the nose section Both "C" clampe (21 " throat) and a bench vice vere used to hold the form blocko teether The screv end of the "C" clamp was fointed avay from the vorkine side of tho form block to Eive plenty of reom to maneuver. By lecinc these "C"
clamps fear the edees it vas possible to purh them over ane vay and then the other as foming progreseed so that unscrevine them and moving them vas not required.

Fo FCRYIHG TCOLS - In Fomine my ribs I found that the following tools Gorked out best. A medium veieht hamer wth a modified hard rubber moad. GSeare sells one for abcut $\$ 2.50$ which has replaceable heads one plastie and one rubber head.。 ftled to a wedec ohape (about 60° engle). This hard rubber hammer not only more durable - no chipping etca, but it also distributed the ferce of the blov over a larecr arca do it does not make oharp dente like the plastic hamer does. Many buildera heve had trouble Sincting a hemmer vith the proper hardnees head. A hardwood hamor can bemado as a substitute。Maple about $2 \times 2 \times 6$ pointed on cne end torke Pairly vell.

A mooth buckine bar about $1^{\frac{1}{2} "}$ to $2^{\prime \prime}$ thick, $3^{\prime \prime}$ to $5^{\prime \prime}$ Ione and. $2^{2 \prime}$ to 2^{7} thick. Tco small a buckine ber maked marks in the metal where it otretches over the ende of the baro Thiswill result in dente and rippled since thede marko work harden the metal so that it is harder than the adjacentmetal. Too lere a buckine ber ia naturally unvideldy Two selder bars" One is used as a "alapper" and the other is used as a "stompine" rod. The "stompping"ber is hend held and used end on n_{0} tends to flare eut et the end under uce and this vill eatise dento if it io inadvertently used as a clapper. The otcmper io uced for the mere oevero stretchine jobs such as around the sharp codius ci the rib nose, ceco
G. SETEIHG TAE FLANGE - I found thet I ended up with the smootheat rib when I formed the rib ao gradually as poesibles Thatis, I tried to aveideharp kinke, dents, and bende in the formine porceoso Eaeh sharp cient work hercene the metal to a much harder state then the metal around it Those "herd" spote are difficult to smooth out whon they are in the midcho ot cost arco.

The frst operation io to bond or puch beck by hand the protruding flance. Traflance is bent about 30°, and becouce of the curves eansed come generel warpine of the ilonco. The metal ie set at the bend.radur of the form blocks by licht blowe vith the vedee oheped hard rubber hammer. Tho flance to kecked up by tho buckine ber and the hanmer is swuns to otrike dpwnard at abcut a 45° angle fiter the rib had been set all arpund the top and tho bottom the indexine pinc were romoved, f found that if they aro leat in the holes in the form block they may boccme elongeted when the heavy poundine takes place cone herm klocis Will olipe little with respect to the other even though the rib stays foot to its formblock,

For the remainder of formine I tried to keep in mind thot Thorp said the idea vas to stretch the metal not bend it The 6001 t 4 formo quite readily and it is fun to watch the rib develop te buckine bar vas held behind the flanee and tho hamer was ainad at the triangular sap formed betmeon the buckine bar, the formbidek and the flane. Each poos of atrotch formine vae etarted at the nose and wos procresolvely moved tevare the back. hater each pase e rubber

ERCERETS FROM T-18 HEWSLETTERS I-I2 FAEC 7 Rotyped 26 Nov 76
mallet vat used to top the slance back to a 60° slant to form a new tiangle gap to otretch inverd.

Eventually some radial wrinkles began to appear. If not taken dare of early they quickly develop into sherp work hardened creases Which are alnoct imposeible to beat dovn. To remove them I bent the Zlance over farther thon normal (45° or flatter) and centiy wiped out the base of the wrinkle with the rubber hammer, About three forming passee are needed to form out vell beyend the $5 / 3^{\prime \prime}$ thal flange dimoneion. On the third pasc i used much heavier blevs of the hammer to vipe the motal into the trianele eop. The bucline ber was actually overlapped devn on the form block to allov the full $3 / 4^{\prime \prime}$ wideh to be strotched.

The final formine operation is the only place I diffaredat all from Thorp'o practice. I felt that 1 got better fianges if ladid not try to slap down the remainine vertical rlange. When itried to do it I found that the already formed portion of the flanco veuld tend to jack un awoy from the form block giving the appearance of severe spring backo. I merely stretched the vertical flange so that it vas out vell beyond the $5 / 8^{\prime \prime}$ width and slowped down the mrinkles in the horizontal flange with the "slapper"solder bar.

The rib was then trimmed with aireraft motal chears to tho deaired width. Since there were quite a number or ribe in the vines and tail, I mode a 5/8" depth gage. It wae made from a corap piece of the form block (birch) material with a richt oncle notch out about I" deep. At $5 / 8^{\prime \prime}$ up from the bottom of the notch cutout I drilled a hole and pounded in a charpened nail - juct far enough so thet about $1 / 8^{\prime \prime}$ or the point grotruded from the side of the notch.
H. MAKIHG ACCESS HCLEG - AIthough the plans did not call for themg we felt that it would be a cood icea to have holes in the ribso It allows you to eec ingide and repair denta amone other thines. beaidese tho $F A d m a n$ can see ingide after the wine is all riveted so you don ${ }^{2} t$ have to vait to let him look before ycu "cloce it up".

Some holes vere $3^{\prime \prime}$ in diameter encl others were $2^{\prime \prime}$. We made them with chaosis punches. The "hole savs" from Seors could be used inotead but they do net leave quite as clean a hole. Tho most important thing ic to clean the burrs cis the indide of these holes and then emory them to a mooth finich. Othervisc, a crock mojresult when the flarine process is underteken - we found out the hard way.

The "ilarine tocls" vere made on a lathe from $2^{\text {an }}$ ook. Thore was a set $6 r^{\prime \prime}$ holes and a set for $3^{\prime \prime}$ holes. The maie partiof the $2^{2 \prime}$ sot had a $2^{\text {" }}$ diac pluc with a 45° flared skirt. The matine part was a ring 2^{v} ID with a 45° flaro at one end. (Sec HL \#23) The lightening holes were flared by inserting the plug throuch the rib hole into the rince The pius was then Given several "hard licks" with a rubber mallet. Prestol therc is a really prefecoionol lookine rib.

1964 FLY $-X I H$ - DICK CLVIN
Thic issue is beine written just after the Fly-In and well try to fill you in on the big quection To ansver it in one vord-terrificl

The T－IO looko Ereat and it ilieo jugt like it locko．Ite climb rate nd ancle（at 120 Ihs）is spectacular．Somewhere around 2000° per min． Uh the 180 hp encine it loats alenc at 180 with lots of power in coserve．John Thorp comes right out and makes the flat otatement that he vill heve the Tom toppinc 200 mph when the clean up procram is done He foele that the lichter GPU englne and prof combination vill to almoct s vell，too，Vicibility－very cood，Cemfort averace or betier l inse level－ok．Takeofrrun－less thon a Tailuindo In Sleht handine－superb，hll in all，itos e real honest airplane Iron the time you fire up till you shut it ofs．In my opinion，a good 75 hr pilot could fly this cirplane vith no problenso lil contzola are peoponoive，but not sencitive it t^{2} very veli behoved on both $T / 0$ and Iancinc rell．Once again $I^{2} 11$ predict that it will be known as an outotendingly fine airplane in time to come．The only item that didn t pleace me and the other boyb that rode in it wab the cear actson on rouch sod．It＇s much too otiff with tires thic oize，but var eseelient on hard surcece．Sod there vas vory rouch and there is a dificrence in 3 mph taxi cpeed and $50-60$ mph．Geer will be fine for x－wind work． Ifke moct other hifh performence ohles，this one vill be at its bect on herd surfeced runvays．Hy hot ${ }^{2}$ e off to Jchn for one more fine airplane decien．

METAL GOREING－Dick Covin－Here ${ }^{2}$ o an area that came uncer considerabla diocucoionet the Fly－Ino We recently vere cxperimenting with eostine rop rivetevs．$H^{\circ} \mathrm{H}^{\circ}$ ．In the procese of checkinc how vell each sveiled up in the hole ve mede the discovery that there vas a very constderable amount of radial crackinc or cking due te dimpline and swellene of the rivet．Naturally this shook us up alittle。 We round that carceril comburrine prior to dimpline minimized this，but vould not eliminote it．One Good＂fix＂ve fcund vas to use a cloth buffine wheci vith enery compounc after dimpline，being careful not to overwarive rivete。 John says the problem hoo alvayo been arcund，but is not a serioue thine，as he cracke don＂t opread often（Hote：In 1976 ve can verify the ）

Try this deburrinc tool－a slotted dovel to hold aluminum wool－usec in a crill．We recently improved on thic．Use a $1 / 0^{\prime \prime}$ dia．aluninum rod，tapered to point on one end． Dif the point in opoxy blue（local hdwo otore）ond attech aluminum wool for overnite cure．It works vell but be sure to uce only aluminum vool．Stecl vool is verboten，It acts like cancer，triesering rapid corrosion Bulkhenco－Our forn blocke for fucciace frames vere carefuliy cut vith a 45° routinc tool for the inner flance．We have since learned that a moother job reoulte if you den th bend to a reotricting curface，but dimply make form block 90° ． 1976 Note：Bend all inner frome flancec 00° except in corners．Excercise extreme cuticn to provent crackine in cernere．Strike with a vipine action vith rubber mallet。）

When bendinc fucelace bulxhead flanges，I decided thet I could never cet an accurate ancle on the flance on the form block alone． hiter formine I usod a hardvoce block（about $6 \times 2 \times I$ ）with a olot
cut in botton (the thicmeso ex the metal) with about a 10° angle on the nose of this "tool". Lay the part on the bench, flances upg sif the slct over the flange, rebenc the flane to the exact ancle, using scrap metal template to check the ancle. Hold down (tightiy) the reat of the bulkhead not beine bent, workine up and dovn the flance efey decrees at a time. Worke ereat

AI O'Erien rocently wrote about his method of ubinc Rolipine for indexine and pert duplicatine to eliminate "slop" around indexing holes in templetes and Sorm blocks. He says Rellpine fohich are tubular pins with clot running full lencth, formine cylindrical sprinc are excellen His nethodf (I) Make tomplete of part (2) clamp template to piece Oi oteck (3) Scuibe cutline of part, center punch (uce duplicator punch all hole ornters (4) Remove templete from stoch, clamp stock to second pince of stock, drill one hole $094 / 0007$ diao, throueh both pieces (5) Drive . 094 Rollpins in hole. Repect until all holes drilled and pinned. (6) Finich part to cutline shape, knock out Rollpins, open holes to final size。 (7) Break all sharpedces and prime. Rollpins available from any elastic ston nut dealers. hi makes his templatec of $0.064 \mathrm{~T}-3$ fnever use anythine but aluminum for templatec, ar expancion coeficient difecrence between unifke metalo makes them unucable).

If you use 12" lenetine of the mall extrusiong rake the splice haifvay between bulkheace \#573 anc 574. First of all iile the sharp corner of the ext'n of it will nest to the inner radius of the othero The filler piece chould be of cufifcient length so that it picke up at least 3 rivets (of tho precent rivet opacinc) on each side of the cplice and proferably 4. Jrop other rivete in halfway between the prosent ones, but alternotely ataccer them from $\frac{1}{2}$ to 1 dia from the prosent center linco Don't leave 90° corncre at the ence of the oplice piece mosthly taper to 2nd rivet from each ond. (Here ic an cxecllent place to uce riveto pluc achesive。) Hero ${ }^{\circ} \mathrm{s}$ a couplemore Eens From Dick Fink (I) foret sheet metal Grincl drillo-Ecta:\# Dethe conter drill from Chicefo Latrobe Tool (4II Wo Onterio Stn,
 Catalec \# is 217-1, Their \#2 crill is icientical (Cat. \#2I7-2), but drille eut to $3 / 16^{\prime \prime}$, or 002 short of a \#l2 drili. (2) Sec sketch. To ficure bend allowance or "corner ohrinkage" take a strip of req' d thickness oxactly $l^{\prime \prime}$ Ione and $2^{2 x}$ wide. Scribe a line $2^{\prime \prime}$ from odee, perallel : I" side. Flace in brake with correct radius bar. bend up 90°. Wise the two leec of the reoultent ande subtroct the oricinal leneth of $\mathrm{I}^{\prime \prime}$ and this is the amount the bencl took up. Figure your bend allowance from this. For my set up $h=0540$ and the plece had a net gain of 020° for the o 025 materialo

EXCERETS FRCM T-18 HEWSLETRERS I-12 Foge 10 Retyped 26 Nov76

QUESTICIIS FCR JCHI TECRE

I. Hov cen the 0-290G engine be modified to give hither horevower? "To soup up the 0-290G for hicher horoepoverg a crankohatt from ch $0-290 \mathrm{D}$, D 2 , or $0-320$ engine should be used.. Thic gived the added strencth required fer the hicher horsepover. The sludge tubes in the 0200-G crankehaft are larcer than in the other encines. pifferent pistens can be uced to ston up the horsem

2. Can a propeller be pafely attached to the bare 0-290G crankshaft flance?
"Ho not for a metal prop. The thin fiange is not safe witaut a flonce reinforcement. (See NL 31 for dves)"

3o Howlio the tailwhoel apring made $\begin{gathered}\text { a }\end{gathered}$
Make from 2024-T3, bend on an arbor press, thon re-heat treat。 heat to $960^{\circ} \mathrm{F}$ and quench in cold vater."
4. What exhauct cyotem should be ubed?

H/ croosover systom is mestefficiont. Thore should be adequate space for mufflers, ne on each oicle. Due to the hich coot of stainlese tubine you might. use recular automobile exhaut tubing avalleble overyvhere in varicus shaped and oized. The comileted oyotems cen be porcelinized for addod Iffe, Thic ocrvice lo available in tho lareer metropolitan areos." Note: Stainless is half as hoavy. Ball joints are escential.

John says that he doesnt approve of adcinc a lot of extras to the T-IB to weight it down. The predicted high performance will be degraced when the Srose veight increases. ${ }^{2 H}$ But even so the limit load factor is $\$ 5,0$ at 1500 pounds." "The beam is desicuad close for Ifmitwof. of 6,0 at 1250 Ibs cross. Bill Warvicks T-18 grossos at 1450 Itba and Earl Bove?s, 1500 Ibs.

RIVETIIG - Here are a few oscontiald which evoryenc should know before doine any rivetinc on aircraft ports. Gcta bock on afrcraft rivoting and read it. Talk to othor peoplo vith cxperience in this typo of work。

Tyocsand itzos: Ie yeu erc usine pop riveto, write to United Shoo Machine Ccep Weot Medvay, Macoo for a catalo Co In you can tifin a local dealer whe headies the rivets, order.from United shoe. Order moncl rivets with the otecl shonk.

Convontional riveto come in many sizcs, shares and meterials. The plane opecify diameter os that is no problem. Fength oi the rivet is dotorminod by tho thickness $=$ tho matoniale beine joinedo Teke the sum of the shoct thicknosece beine rivetod and add 1.5 rivet difmetors. Sinco riveto come in loneths of 1716 inch stops, the nearest otancard lencth rivet creator than the calculeted sum is used. You vill find it very vorthwhile to \quad urchaco a rivet cutter for cuttine axtra lone

wiveta tc the rieht leneth．This tool is not only easy and fast to Forste，but it also makes a clean square cuto Rivets cut with Tieconal cutters cannot be drivon properlyo．The size and shape of She drivea head tollo the inopoctor the story of whether or not the proper lencth rivet vas used and hov vell it vas driveno The driven Goad（the one you form）should be at loast 1.5 times the rivet shank iamotcr when the proper lencth rivet is uceco The thitckess of the Jriven head ohould bo at least one half the rivot ohank diametero If you ovordrive a rivet and the driven head io lareer in diameter and chinnor than those dimensions，you had betcer drill it out because the inopeoter vill make you remove it letor when it iomore unaccessible。
－It is a SOOd idea to make gomnowgo gages out ox sheet motal for the most common ofzos of rivets，show the Fhtinopector that your riveto heve been shocked in this manner and he vill have more confidence in your worko You vill soon learn that a $1 / S^{\text {＂}}$ rivet won＂t sit in a $1 / 8^{\prime \prime}$ hole。 Use the drisl or Whitney punch sizes as 20110ws：

Drill Eizo	$\frac{\text { Mivet }}{1 / 16^{\prime \prime}}$	$\frac{\text { Drill Size }}{H 50}$	$\frac{\text { Rivet }}{5 / 32}$
$\# 40$	$3 / 32$	$H 20$	$3 / 16$
$H 30$	$1 / 8$	1710	$\frac{2}{4}$

Use the correct edee distance which is two rivet diametcrefrom the center of the rivet to the nearect edee on the sheet。（ $\frac{1}{4}$ gor $1 / 8^{\prime \prime}$ rivetol。

If a hole is oversize or not round，the next size rivet should be uoed．Fof rivots ahould never be used in oversized holes but aMes san be expancied a reasonable amounto Eapecially rlat head rivets can be readily rattened up before inoertine in the hole。

Round head riveto cen be used where thoy are not aposed to the sifpotmoome It appears that moct Tmio builciers are villince to eo to the litele extra vork necescary to use fiush riveto on all external suriaces，This requires dimpline the skin．Countorminking is not recommended when the skin is lesa than $0050^{\prime \prime}$ thicko

Exeep where himohear riveto are specified，most oi you will want to unc AITS＊T rivets which can be driven without heat treatingo These riveto heve a mall dimple in the heads Rivets vith raisec markings muet bo heat treated before drivinco

Dimplinc tools can be purchased for hand dimpline，or for use in a．Whitney ranch or rivet oqueozer．Hovover，if you have a lethe available frnow momeone who has one，you vill find it a simple natter to meke one For the male part，make from a steel rod of almoct any diameter lareer than the rivet head cut the shank equal to tho rivet diamoter and about $\begin{aligned} & \text { at lonc to act as a guide The }\end{aligned}$ portion which formo the dimple should hove the same angle as the rivet beint used，Note that pop rivetc hove e 120° head，vhile standard rivets usually have a 100° heado the remale poriton of the dempler should be rather heayy and of a convenient shape to rit in tight

ERCERETS UM T-18 NEWGETGERS I-I2: FageI2 Retyped 26 Nov76

पontoro. Several senale parts can be made to itt the various location

The beot way to drive riveto is with arivet Buno miorequires - subetantial cupply of compresced air for fover. When usine a rivet Tung the rivet set is placed acainct the factory head, and tho bucking se againot the chank. Some builders have reported oucceos in driving Glush rivetg backvardo with a fleturon used for a bucking bar and hold ncainot the factory head. This procedure hac the obvious disadyantage of drivinc the rivet back out of the hole if the ilatiron is not held Armiy in place. Drivine rivets by henc is accomplished in the same Way with the rivet set placed againot the whank end of the rivet to recedve the blows of the hamer and the buelrine bar hold againot the faetory head. A rivet squeezer is ideal for riveto close to the shect odre. It 4 s important that all tool sursaces which come in contact with the revet be polished to remove all scratches to avoid settinc up otress risere in the riveto.

BUILDIG IHSTRUCTICHG: Step-bymstep buildine instructicns fox the Tol 10 oricinally printad in 1962 throuch lo6s Sport Aviation are all concoliciated in the EhAmanual, "Metal hircratt Building Techaiques" availabio from Efs Hoo for $\$ 3,00$ (1976 price)。

BUILDIIG TE FUSELAGE Here are a Eev tips that might heli other builders in building the fuselare. Follow parts θ and lo of Thorp's DULLDING TH T-IS articles. Evorythine worko fine juot as the inotrucm ficns specify. It is of considerable help in squerine up the fucelace durinc assembly if the \#52Sm bottom okin ic laid out with encugh excess metal to extend across the main spar cutout and overiap the 523-2 floor. This permito the two bottom akins to be clecoed tocether fer better alicnment.

Some people have found it difficult to obtain 16 fto lentho of $3 / 4$ in ancle. Merrill Jenkinc, Harbor City, Ch and SFORT LERO have these. They alsc have all cther extrusions for the Tmis. It is Reacible to use shorter leneths of extrusions and splice theme You on also sove about \$150 on the sidestins byobtaininc two 4×12. 4 . shects anc mokinc a flush splice between staticn 159 anc 179 . Use a piece of 032 or 040 material for doubler backine I hichly ecommenc a simple lap aplice on frame 573. Xt looko even better Ghan a flush splice becausc there are less rivetos hdd one extra cow of rivets with about $105^{\prime \prime}$ spacinco

In fart X, John statea that the curvature sheuld be put in the lonecrono before assombly. He hac since found that the lonceronsccan be rive ed to the skino in the ilat conctition before veins ascembled. They are then bent to shape as the skins are clecoed in place on the Fusclace This enoures that the sing aro drawn tichtiy acaingtene Ioncerons since some waviness will occur is the lonearons are bent and holes are tansferred on assembly i was obeptacal or the procedure and found it very eacy to bend the loncerons to the proper cirvature with a jic ade by Don Carter.

For e hending jis he saved a 12 ino radius alone the dage of a piece ore is 4 , one pootlonc, then made a saw cut blone this ame
odfe abou: 2/I $6^{\prime \prime}$ wide and over one inch deefo. He then nalied this Aouk to a table and nailed another back-up block about 4 avay from the curved ede. By slipping one lec of the angle in the saw cut it ros a simple matter to procressively bend the onele to any desirod mevature. These anclos were riveted to the skinc, while they vere sif the fucelace ascemblyo Durinc hole transfer from the skin to the foncerons, the loncerons tere held nearly flat. Then when thay vere Dit into the acsembled fuselace, the sking vere drawn tichtly adainst che Ioncerones Tt vas difficult to detect the Itchtly ocribed fore and aft center Iines on the longerons for hole trenster until y found a oimio cure I sprayed a coatine of zinc chromate on the longerons before scribint them. This made thessibe lineo show upo The - 3 Ioncerons should be cut off at a 30° ancle to make sufficient clearance for yudder. The $3 / 4$ angles can beriveted to the skins before final asocmbly。 To Eet skin tight while riveting, sprinc angles to give them less curvaturo. When bent to proper curvature they drav akins tichto

You should have no trouble tith the matched hole tooline technique on the zuselace cucept possibly on the top rear skine Then the shin io mated with the fucolace frames any olight misalignment vill cauce "oil cans" in this skin. Since other builders have experienced this problem I chose to take a slichtly different approach in transferrine the holes from the okin to the fromoco Ifirst drilled all of the holes in the skin acept alone the sice flanceso Before bendine the flanees do n I trancferred the top center line holes from the slen to the iramer With these center holes loceted I then uced transfer otrips to locate the remaining holes. It is important to remove any twist in the fuselace beforo the center Int holes are trancterred. Bending the siances on the top skin vas done very oimply by bencing 1 t over the edse of ce board vith the curvature of the top akin saved along the ddges I bent up some cmall tect samples first to cetermine where to place the skin relative to the edeco the board. idter the flange was bent down to 45°, I marked the location efeach ivet hole and then, using a homenade crimpine tocl, put one crimp between each rivet hole to drav the skin down to mect the fuselage cramese The 500 m I "hip" skinc vere made in a similer foshiono. Care chould be taken not to critend the crimp very far into the fiance or tt will be visible after acocmbly

MHIMG TME PIN - Dro B.John Shinn .. In Part VI, BUILDING TAE Tasion NOV, IO62 SFORT AVLGTICH. Thorp Daid, "Whon the fin is done you are the maover of the T-IO projecto No other component ia harder to make." But, when tho time came for mo to make the fing I was definitely not yet ready to make the hardest component on the T-IB, I vas, of course, spoilod at this point by the relatively casy ascembly of the matched hole tochniques which wore used on the ving panclo and otabilizero Thoy aro roctancular in reincipal viow and lond themoclves readily to thic approach. Not so vith tho oyo-pleasing but trapezoidal fino To cet arouncl this froblem I have ficurod out a vay to make a very simplo fin joge Vith it I found that the job of buildine the fin turned out to bo cosy, fast and a lot of fun.

2nuct adnit the problem of supportine the skoloton (fibs and boans) osscmbly of the fin as suggested in the article, (so that its conter plano vas hold 3 inchos above a tablo by lots of clams and blocks) had mo a littlo concerncte Tho problem ©nawod at mo for quite a while anc eradually the idea evolvod that what i wanted was sonc wey of holdine the skeleton in ricid alienment which would allov no to fit and drill tho skin simultoncously anc symmotrically on both sides cver the skeleton. But how? hll of these things at once aron't so comotible. Any ricid jig wuld havo to conc throuch one side or anothor of the skeleton to be supported. Buts the only side that vasndt to bo fittec vith tho okin vas the backoicle. the beamo That's itl ajut thet fito through some holoc in tho boan Now all I had to do Wes figurc out how Sinco it had to be chear anc relativoly oasy to moro, I rusod out motal veldings ctco Thus vood vac used: $2 \times 10^{\circ} \mathrm{s}$ (all ap offerd and true ac pocciblo) . The basic idea ras to clamp the roar fin beam betroon two blocko of rocd to which the ribo could bo sercvod and hold in rieid alignmont. Tho clamps and the blocks could not protrude beyonc the width of the ribe Ficurci shovo the bacic idea of the jiso

The moin jis orar made of a 2×4 ic placed behind the $566-1$ fln beam and two larce blocke of $2 x$ lo are clampoc cdecviso over the $566-1$ fin boom. The clampine io done with four $3 / 8-16$ bolte $6^{\prime \prime}$ Iongo Tro larce 1-1/4" holes in each block provide a placo for the nuts of the 3/8 bolto, (My Seare Craftman Fowercraft wood bita werouced te make thesc holoso). Wechers are placod under the beads of tho bolto os noedod to keen from "ruming out of throadeo". The bloeko aramet at oxactly 8° ofsporconclicular (oo shown on the fin aosembly porat) at tho richt position for she ribe to be clamred to them,

The 2 x 4 con be clomped in 0 visc to hold the jig eocombly durting the cntire akin fltting operation Tho ribs are "alamod" by long rood scrovogoing into tho oad of the blocko dVoshome undor the morev had will hofr diotribute the load on the rib a littlo bottoro y hoto botom ribiswocrowed to tho botton ode of ono block whilo tho midele and top riba arescroved to tho othor blocko If tho blonter do mot oomo out at juct thoricht posstheng kocy trimmine them wheit thoy doo If you 60 too far, chime son bo made of scraf aluminumg macomito ox thin plywood, dopendind on tho thetokece roquirodo.

If you wont a really fractoless jisG then you ${ }^{8} 11$ want to use rib blocke which support tho rabs cloan out to the front theoo
 bo ferced fit of alienmont if proper caro is not ororetaod durang the fittine of the fin skino). Those rib blocks are soroved to the 2. $10^{\circ} \mathrm{s}$ which have beon trimod oo thot the blocko will hold the ribs in the rroper place。

Beforo the ribs are screved in ploce, they are "elcoond" to the fin team throuch the rivotholes and aro "c" olamped to the blowso
 Dook vill de the jobs. The ribs aro thon lichtiy tappod into ay Ermont bofore cercuing to the blockso Tho alicmont can be dono by: \& sighting to a Iinc, (2) using a floxblo streight odco, and es laydnc tho jie aoscmbly on a flat ileto ftablol cuprortod se that tho oooter

Iino io parellol to the surisoc. Thio last tochnique usos somo wodges ane from scrap wood) which con be topped for proper postionlvge fo a chockg I used all three techniquedo (Don Carter went atepfarthor ad assemblod the jic anc fin beam on his fucelage so he knev tho bottom rib vas at the right positions)

From here on the job was juct funo Dimensions from the pians vere used to lay out a fin skin that had about "nto $3 / 8^{\prime \prime}$ excess on all bides. The zin okin was cut out and then was bent by: (1) Boving the chin so that the trailing edees could be clamped together betveen two boards, and (2) squeezing the skin together by using a cloth srapped 2×4 to ruch down on the ckin as it lay on a table. you realiy have to lay on it go get the charp radius that fits the ribel The $2 x$ dictributes the load so you won "t get a "Iumpy" bend. Lfter goveral trials of bending, unclamping, ittting on the fin skeletor reclemping, and really pushing dovn hard you'll decide its a good tito

The okin is then held and clamped down in position on one side or the skeleton wile the other oide is lifted uplike a flar so you can reach in and trace on the akin along the botton edees of the ribo vith a pencil. Observe the eap betveen rib and pencil line. This much muct be added to the o 250 rivet edge dintance when you mark the center line of the rivet pattern for each rib. Measure up the proper distance from the traced line and drav in the rivet pattern center lifice Drill a $1 / 16^{\prime \prime}$ hole at the foremost rivet position that you can with the drill you are using. (This will be from the inside of the fin skin, of course.) How mark all ribs with pencil at 250 inches from their bottom edces (i.e.g the rivet center line) o Reposition the skin over the skeleton sliding it until the center line on the rib chovs through the $1 / 16^{\prime \prime}$ hole in the skin. Drill through the skin hole into the rib with the $1 / 16^{\prime \prime}$ drill while holdine the skin firmly by hand on the rib leading edge. Both holes (rib and skin) can now be drilled out to a size 30 end a cleco inserted The pencil linea are rechecked for shifting, etce The skin is removed and an undersize hole is drilled at the rivet position closest to the fin beam. The skin is again fit on tho skeleton and clamped with the front cleco. The back rivet hole ie checked for alignment with the pencil line on the rib. It it is cloce encugh, then proceede (Othervise, chect for reacono and decide on either (I) extending the undersized hole sidevays with a file meet the pencil line, or (2) ©rhape alexine the skoleton a little。) When you ${ }^{9}$ re satiafied with the hole alienment, connect the front and back holes with a pencil line. Mark ofe rivet pesitions and drill smald pilot holes。 Then ream out vith a $\# 30$ drill, putting clecos in as you go.

By removine all but the top cleco this dide can be pulied uplike a flap so that the opposite side ribc can be treced along to determine the rivet line. Repeat for fll ribo. Be sure to put clecos in as you drill. This mevents bulees and warpine. You may now trim the skin to sice. The only thine lett is puttine in the rivet holes for the inn bean (front and rear).

The zattle front beam can be clecood in footition on the bottom rib. By opening up one side of the okin you can reach in and puoh up fimmy on the top end oi the front beam. While holding it in

EACERETS FRCETME NEWELETTERS 1-12 Page 16 Retyped 26 Nov 76

position you cen sight up along it devise from the bottom and dray 1 rivet center line for the straight position o Check by several resightiage and drill a hole Check edge distance on the bean and proceed with other straight line holes accordingly. To get the holes along the curved portion, remove the front beam and make a transfer "complete on the beam, Include holes to be drilled as vol as those already in place Reinstall the front in beam and cleo the template un the akin and drill the remaining holes.

If the rear fin bean wo not punched before fitting the skin, then the once procedures as described above can be used in it is already pu che, then it io nececonry to transfer the holes to the skin, ft he top, where the overhang of the skin is not too great, the Mhitenoy punch can be used to punch through directly. At fiat It would sem the hole is on the money piece to do this, since you ant t get the punch inside the channel on the beam to index on the hole Thin problem can be circumvented by a neat little trick we learned. Slide the punchover the two thicknesses of metal (skin and sopor) with the die on the spar side and the punch on the skin side. Then push a long $1 / 8^{t}$ rivet up through the die of the Winfrey punch and hold it in plecelightly against the underside of the beam. Side the Whitney punch around until tho rivet drops in the rivet hole already punched in the beam, and then squeeze The rivet is pushed down through the die by the punch and the plus from the new hole.

Where the overhang is too large for the whitney punch, a long $1 / 0^{\prime \prime}$ Granger punch can be used tush it through the holes in both flanges of the fin beam, listing first one skin as a map and then the others With afreet deal of care you could drill through this hole in the beam, but it ${ }^{2}$ s tricky and you might enlarge theme the fin is ready for riveting 1

While the description of hov to do the fin may seem pretty involved the actual job is pretty easy The next guys in line will really think it easy since the jig is already built

FIN JIG

Shees Metal Materina List

```
\(\therefore 24-73 / 1 \times 1\) ad \(025^{t} \times 4^{2} \times 12^{2} \quad 7 \frac{1}{2}\) sheets
    ESet Humbe: Use
1 Cuter wine okin 32 pluc 2 tuse fromes
2 Outer vinc skin \(32^{*}\) plus forvard upper skin
3 (Inboard wing slin \(90^{\circ}\) (includes 2lap junction)
pluc inin skin。
Inboard wine slin \(90^{\circ}\) plus 2 fuso srames
Top fucelage skin \& deck plus bottom fuco skin
Fuoclage oide slin and "hip" olin
Fuselage side skin and "hip skin
Two stabilizei skins plus spaxe
```

Notes Shocto 6 and 7 can be replaced by one $5^{\circ} x 15^{\circ}$ sheet eliminating splice but costo ebout Slo, more Sheet 2 makes a close iit on the upper skin. The other hels oi 0 mould be botter for the upper front skin。

```
6061-T4 \(025^{\prime \prime} \times 3^{*} \times 12^{\circ} 1\) cheet
    Ribe sor winge, fin and stabo
```


1
hilerons, otab teb and rudder
Flape (hali sheet approxt)
2024-T3 A1c1ad 032×4 x 12 chect

Frames beamo, canopy, ensine baffles
2024.70 or 6061 mr $54032 \times 4: \times 72^{n} \frac{1}{2}$ gheet

Frames and ribo

2024 TC or $6061-T 4 \quad 040 \times 4^{\circ} \times 24^{\prime \prime} 1 / 6$ ohect

Ribo, sucl tanls support etco
2024-73 $040 \times 4^{9} \times 12^{8} 1$ chect
Main spar, flocr (enough for 3 airplanes)
SH TC GET STRPTED - Several persono heve acked how hhey ohould get tertcod on the twlo if they have nevor fore built a mesal dirplane. Coll, i can ${ }^{2} t$ sey thet it mekes much diterence hevine ceon projects startod in various ways. One of tho tirot thinge you ohould ey row ordiess of the part that you chooso to build first, is obtain a rev cocescary tools and equipmente Finct, you will need a nice smooth pork tables For this 1 built a eimle fromemork vith oix 30? lege
 to form a perrect table top. Don texpect cood reoulto withmatched
holc tooling it you do your traneferring on a piece of bent cardboard - sh cho uneven worlshop sloor.
 uf essential tools, their coet and pources:

In addition, thece tools should b available at least on a lon basis or are optional for convenience.

Band sav
Sabre sas
Welder
Rivet Gun
Spray Gua

$$
\begin{aligned}
& \text { Air Compresocr } \\
& \text { Drill Exeo } \\
& \text { Lathe } \\
& \text { Tubo bender (hydreulic } \\
& \text { hickey) }
\end{aligned}
$$

Milling Machine
Reamers, several
ธizes
Belt Sander
Butifing wheol

DIMPLIIG - After much exporimentaticn with various dimpling tools and technicues, we have discovered how te meke dimples vhich give a nice smooth finished job. Common dimpline problemo are: (1) the area surxoundine the dimele becomog recessed; (2) the dimpler soars the netal curroundine the dimple, or (3) the dpth or the mimple in incorrect. The sixst two problens can be solved with proper shaping of the dimplinc tools. The face of the female part ohould be dome ohaped so the flange on the male tool cannot pinch the metal and cause an 2 iontedrine. It is necescary to have orencroue flanee on the male tool* to force the surrounding metcl dom perrectly flato.. Since there io some variation from one batch of rivets to the next, \because the best vay to make sure the dimple hos the proper depth for a din itt is to make a test oample。

* ($3 / 4^{11}$ or more)

It 15 necessary to obtain the uoo of a lathe to make a dimpling
set. It in preserable to use a oteel vhich can be hardened, but I hove mede some from only mild otecl and they ceem to be holding up wello

The male part in made from bat stock at least $7 / 8^{\prime \prime}$ diameter by $2^{* 1}$ long w loner One and is simply tried down to the exact dimensions of the rivet which will bo used．The face of the flange should be perfectly flat with the outer conner rounded Folish to prevent marking the material being dimples the only way we have been able \because completely prevent marline the aluminum wish the flange on the hale tool to to cover it whin a rood grade of cloth tape，fanealve Gage villa ark well o ht least o 参 hole should be made in the center of the tape sc it does not attest the dimensions of the dimple．If the tool is net made with a fiance extending well beyond the rivet head die f the area ourrcundine the dimple will de deformed and the surface smoothness will be disappointing．If a lathe is not available， o bapemeovered hammer and a rivet can be used as a substitute for the mole part of the die．

The female part of the die can bo made by drillinéa $1 / 0^{3 \prime}$ hole in a in a piece of steel and countersinks until the rivet to be used ito perfectly flush in the hole 。 To prevent marking the aluminum with the plane on the male die，it is absolutely nocespery to make the face of the female pant domemehapedo Ipproximetoly a $3 / 4^{\prime \prime}$ radius seems to do the job．You＇II be able to moke dimples that are almost as onocth as countersinks with this tool．

A very convenient way to save material on the female part if dies for rivers with several different aneled heads are to be wired（ 100° for fiN rivets and 120° for Pops）is to make removable inserts as shown in the figure below 。

Tnoerto can also f be made to fit round and brazer head rivets for use in hand drivincrivets without a Gun

Fomember that it is important to polish all dimpling tools and rivet of es to prevent putting otressmisins scratches on rivets or the pars being joined

TH: ideally jnstalled flush rivet ohould be periectly flush with He orter surface since it is not poosible to be periect in all cases, it is better to be a Iittle lov than hicho That is it is aetter *o over-dimple rather than under-dimple since it is easier to rill in a recess with putty than to sand down a high rivet. Fofessionals have rivet shavers to shaveoff high rivetso

IRIVIIG R BTS - Even if you plan to use fop rivets you wili probably vant to use AN rivets in areas where it is convenient to drive them by hand on the bencho The main spar is a good example. Also, it is much cheaper to use AN riveto. I've never seen the subject of hand driving rivets covered in a textbock, so if you are fev at the sheetmetal business, you are probably wondering hon to go about ito

The secret is to use a good heavy backup block - the heavier the bettcr. I use a two-foot lone piece of railroad rail on which have a spot polished where I place the head of the flat-head rivets for drivine. To drive round and brazer head rivets, i place the previoualy doscribed $2^{\prime \prime} \times 2^{\prime \prime} \times 3^{n}$ steel block on to of the rail with the appropriate incert to fit the particular rivet beine driveno

The recess in the insert is made by Erinding a drill vith a radius on the end to approximately match the shape of the rivet head. Folishing io accomplished with a piece of emery cloth forced into the recees with a rounded vocden otick while the insert or stich is spun. It is important to make the radius of the recese slifhtiy larger than the radus of the rivet head or the edee of the tool will mark the wivet head and deform the head in the wrong direction,

To drive the rivet by hand, place the fectory head of the rivet dovn acainot the back-up block. Flace the polished end of the rivet got acainot the shank of the rivet and staike the set with a heavy hammer. Ir is necessary to use a rivet set rather than strike the rivet dire tiy with a hamer in order to keep fron driving the rivet crocked. arces can be tranomitted only alone the asisof the rivet set, so if it is held vertically the rivet vill drive straight. The rivet should bo driven with as fev blows as pessible for bect results. The finished shop head chould be a minimum diameter of $I_{0} 5$ the rivet chank diameter and the thiclmess of the shop head should be $\frac{2}{2}$ the ohant diamoter.

If you have any questicn about the finichec rivet you had bottor drill it out before the inopecter sees i t. Here are reasons ior rejectine a rivet:

1. Shop head off center to tho point where the hole is visibie.
2. Shop head too thin or too small in diameter.
3. Either head marked by rivot sot or buckine bar not beine held in place.
4. Slanted shop head.

By siehtine dom a row of rivots, it is poscible to tell how well they were driven. A nice stratght row of shop heads indicates consiatent rivetine techniqueso

GAIUIIG GEAR - Since very tev heat treat facilities are able to handle do gear in one piece, I ammaking mine in two pieces. simply replace the I, 5^{\prime} tube vith a $1.25 \times .082$ crose tube. Cut this tube at the fugeloe conterline and slide a 6^{4} piece of $1.5^{\prime \prime} \% .120^{\circ}$ tube over ito Bolt the spifce together with four $5 / 16$ bolts oriented vertically. Instead of velding one leg at the ghex of the triangle, veld in a W piece of I. 5×120, inoert the Gear le\& and secure vith 2 bolts. To make the eear softer, cut a taper from the cross piece down to Whe axle on each leg. Tapor the lo tube down to, 020 vall and the I. 25 tube from the end of the 1.5 tube down to 160 wall. John hao approved thismodification for publication (Sce dwg in NX 28).

VISTI UISE TECRE AND TEENHAUS, May $19,1965-$
Serformoce With 125 Engine - Ralph Thenhaus now has 75 hours on his ship. It has a canopy installed which is practically identicai to the one shown in the latest prints. In fact, he says that Dave Gengenbach used his conopy as a reference when making the canopy drawings Por John. With the cancpy and a 125 hp engine Jchn reports that the ship will do an indicated 165 at full throttle. This is a true airspeed of 172 which isn't bad at all. 75% cruise would be at 155 。 Furthermore, Ralph coys he has checked his airspeed against other Jircraft ant he is indicatine about 10 mph slow. John says it climbs at 1500 fpm solo and is a real hot rod which doesn't have to apologize for anything.

Ralph's T-le empty weicht is 335 lbs plus canopy which adds about 20 Ibs. It has a full electrical system and a radio. Stall speed is 68 mph and landine opeed is somewhat higher to minimize sink rate at touchdown.

Everyons who has flown the T-18 without a canopy says that it is too turbulent and that everyone should have a canopy even from the becinningo.

The ships flyinc don't use the 626 balance treights on the antiservo tabse John says that if 0.020 alleron skins are substituted for 0,016 , the aileron balance veichto should be increased in veight by the same percentage.

About the only disappointing feature 1 have found in all the $7-10^{2} s$ io the limited opace due to cockpit equipment location All have adio concoleo mounted between the pllot ${ }^{\circ}$ c. and passonger ${ }^{\text {a }}$ kneeso ith thio cbatruction I cannot get more than $3 / 4^{\prime \prime}$ stick motion toward the center of the aircraft. Aiso, the aft tunnel cuts into the seat apace makine it uncomfortably tight; bó I plan to round off the corners of the tunnel and not vaste any seat width with the upo rolstery penels.

The latest canopy dreving shows the top of the rear deck sliced off in the some plane as the canopy rails. This cuts down on bagege space but looks much better. John says it will be perfectly alricht to cut a hole in the skin underneath the canopy for a bacgace access door. In fact, he said a jump seat could be added for a small childo

Both Bill Warvick and Ralph Thenhaus welded up their own gear tith recular acetylene torches. They used a lot of gas but claim it Wasn't bad after they got the joint heated upo John says that regular arc veldinE vould be suitable if a lov carbon red vere used and the joint verc premeated with a torch to alleviate localized sooline stresses. Vith reguler gas veldine it is better to use a mild steel rod, like No. 6, since it has lese tendency to crack during cooling. All welded up 4130 steel farts should be magnalluxed, copeciolly engine mounts and landing gear. C_{n} a recent tour through the fifer Aircraft factory found that they magnaflux these parts. I sav a laree stack of eear and engine mounts vhich had to be revelded usually at many pointe on each part due to cracks. This really sold me on the need for maenafluming critical velded parts.

Ralph cays he velded uphis own aluminum gas tank with a torch and proper flux. He had never melded aluminum before but didn't have any trouble. He also velded up his aluminum canory irame. He did a real neat job filling in the fluch por rivete with a two parc epoxy available at auto cupply stoneo. After painting you cantt even see where the rivcto are located. The efoxy rouldn't adhere without a primer being applied first.

Fuselase Skin Doubler - Cracks have shown up all of the three shipe now flyine at the forvard upper corner of the main spar cutout in the tucclase side skins. This is caused by the fotigue stresses set up during taxiing. John had recommended that a. $0.063^{\prime \prime}$ 2024 T3 doublez be added to all Toles. The doubler can be put on the outside or inside. It extends up 5 rivet helec down holes, forward 2 holes and aft 2 holes from the upper front corner of the spar cut-out. Connect the rour extreme holes with otraicht lines and cut with ${ }^{3}$ " Geo distance all arcund.

Flape - John has discovered on the SkySkooter, the flap is more efricient if the rear edee of the wine buttinc acanot the rlap is not feired moothly to fit the leading edee contcur of the flapo (He vould chance to this on the Skyskooter in it vere poscible without Fha complications. The best arrangoment ic juct as shown on the dravineso It is nececsary to cement a rubber seal along the rear sar to provide a cood seal when the flaps are upo

Brato Ped - The pedals aro designed yithout suricient clearance to permit dimultanecus aplitcation of full rudder and brake. If you are short, you can move the pedals aft, othervise, clearance can be mede in the tank support.

Floor Boards - Clearance slote for the exhaust stacks have been cut in the floor boards for drae consideraticne. These ohould be cut fron 0,040 aluminum or 0015 stainless.

Fiostes Revorto－John would like to heax pron anycne who erpecte Gake a firct alicht in the near future．The vay it looks now the neyt two chito to fly will be those beloneine to otto Zauner， Yineland，Hu，and Eob Kaergaard，Glenn Ellyn，Ill．I just tanked with $B C b$ on the phone and found that he has had the final inspection and is nearly ready to $\mathbb{C O}$ ．To speed things up，he is using an open comline and no canopy for the sirct ilichto The rest vill come later． To Eivo you an idea of the variation in requirements between FAh． atente，Bob vas told to cet about 7 or 8 hours taxi time on the aixw creft and then call the FAi，so they can vitneod the tirat ilizht． Then I got my SkyCoupe licensed the FAA did not reeuire vitnersing the sirst hicht．Bobis makinc prop extencicne and may have them avaziable for sale latez．

I spent a very intereoting day with John and Ralph yesterday。 Due to a mixup in flans，I didn＇t get a ride in Ralph＇e T－10 but did get to look it over．It had the restrictions removed today． John te bualy workine：on final Fhi certilication of the turbo－prop twin Beech conversion．When that is over，in several weeke，he hopeg to finish up the T－lo dravings and then cet to vork on his ship which hes been sitting in a partially completed state gathering dust for a long time。

KCERIVETS－A number of people have asked questions about pop rivets． Your dealer has a catalog which cells the cize rivet for various grip lengths．If he doesn＇t have an cxtra copy it will cost you oniy a 13 cent stamp to Eet one irom United Shoe Machinery Corpos Shelton， Conno，06485．The T－18 is dectened for use of the low－streneth aluminum pop rivets（150 lbs bhear etrength）except vhere the pzans state，＂no lov strength rivots＂．The price oi aluminum pop rivets at our local distributor io about $\$ 12$ per thousand whilo monel popo are $\$ 17$ to $\$ 20$ per thousand，Moncluiveto are much orronecr 420 lbs chear strenzth。 Regular hit rivetg have a shear strencth of only 375 Ibs．

I am voinc only the monel pop riveto，I tried several counter－ cuak head－luminum pops the other day and was very dicappointed with the finictod head．The head turned partially inoide out so the suppocediy flat head vas dome－shaped．

I never use pop rivets anywhere it io eacy to hand drive a rivet on the bench－ouch as in the vebo of tine oparc．There I use fN rivetc and drive them with a hammer and rivetset．I perconally feel that pop rivetemay become loose guicker that an fN rivet oven though they are etroncer．I＇ve had thio happene When drilling out rivets，the pop rivet vill start to spin almost immediately．Alco，if you try to flatien the aluminum surrounding a fluch pop rivet by tapping it vith a hamer arter the rivet has been driven，sometimes the rivet vill become loose．This indicates that a poprivet micht work loose cooner．I ve not observed this type of thine with hN rivece。

It mint pay for you to contact your Fhf agent before using poprivec: since some of them don't permit their use (for instance, one in the Albany, IIY area) John Thorp tello me that the FhA cannot lecally stop you from ucine them hovever, but they can give you a hard time.

I foel that you are loss apt to end up with twist in a ving or control surface ifitio ascembledwith pop rivets. hnd twitt is a major problem to look out for. Ralph Thenhauc had to re-skin his center vine becauce of built-in twist and Bill Warvick thinks his wing drop-oif in a stall may be cauced by twist. With pop rivets, you can eet an ascembly all clecoed together and checied for stedehtnesc before startine to riveto When voing hivivets, you rivet up one piece at a time with at least a portion opened up for buckinge This proceso is certainly more conducive to Eetting a twioted ascembly.
4.IR CCDIRESSCRS - I recently fixed up an air comprescor from parts obtained from a local junk yard. i found a two cylinder refrigeration comprescor which, when draven by a $1 / 3 \mathrm{hp}$ washing machine motor gives me more than enouch air (up to 125 psi) to keep a rivet gun goine as fast as I can work it. The compressor, tank and mounting base cost me only $\$ 3$. If you are lucky enough to find a compressor pump, you might vant to put a rig together. Sears selle aregulator and Eaze set. Of course, you cannot use the compressor from a hermetically sealed unit found in all modern refriceratoro. You need the Epparate concressor that looks like a little Gasoline engine。 To get suificient volume, cet one vith two cylincers, hiso, don ${ }^{\circ} t$ use the type with the intake throuch the crankcase as thio will get too much oil in the lines. If the intake is alone the stide of the cylinder with a drasn to the crankcace, plue ur this drann to keep the oil out ox the atr lireso Cthervise, no modificetion is neccosery on the compressor pumpo hatometic ohntota switch is not necessary for the avorace usace Juct plue it in and let i今 run as lone as you are ubing airo. However, a presoure rellec valve is a must for sascty, I pousht ore from a local air comprescor dealer for about \$2. It nan be aducted for any presoure, I bolieve the Soers models $\operatorname{can}^{2} t$ be adjusted. Youtll also need a presoure reculator and two gages.

GLS ThITS GMD RADICS - Those of you who do not like the idea of having a bulky redio console hanging under the panel between the pilot and pascencer ${ }^{\circ} \mathrm{s}$ knces may want to locate it in the upper center on the fanel. Some of the newer radios will fit into this opace with only a slight notch teken out of the: tank.

FUSTIGSE - Someone asked whet "spline curves"meanc on the fusclage skin patits, h spline is a draftoman's tool made of flexible material ond is ised for draving in contour lines. When you lay out the skinc, first locate the points at the frame locatiois then take a
lone flexible piece of material ... wood is ine - and enchor or C. Melpers hold it to the pointo at the frames. Caresuliy mark alone the spline with a pancil.

ERGUEGS - Some people are confuged and reriexed tho dimencions arentt alveys given directly with lines and arrows in the familtar fachion. The use of stotionc, weter lines, and butt lines is acopted aircraft practice and is as oimme to understand and use as a,b, c. Stations (STK) are Given fn inches measured from some arbitrary reference point usually somewhere fin gront of the shipts rose Vater lines (HL_{C}) are vertical distances in inches and butt lines ($B L$) are leteral dictances measured fron the fuselege center line, seasons fuy usine this syotem are many and obvious. Drawings are mucit leso contuoine tithout all the ertra lines and numbere and it ic easier for the desiener to leepeverythine correct. You vill find reqsete of plans as accurate as the T-lo pleno. FILE SYSTEM -
You vill vacte mony houre looking for certaln prints if you don't sit down and meke a complete list of all the dravinge and their numbers. Then juot tile the prints in order and it only takes a few seconde to scen the list fow the desired print and then locate it. It is vise to clabsify printe by component and underline the numbero o. the list accordine to a color code. hll horizontal tail prints cowl be red, winge - blue, etc.

SVETIHGTIS - - By Dr John Shinn- In rivetinc upmytail ourfaces I heve rediocovered a few importent tips on riveting procedures.
(1) Rivet lenfth is very important, especially on thin sheet metal. If they are too short they vill not leave an adequateiy thick shop head and will not cover over the underside edee of dimples. If the rivet io too lone it will be dizeicult to drive straighta it bende over one way or the other with the slightect misaligrment. If the "too lone" rivet is hammerod down to accertable head thickneos it will take very laree number of laree blewe. The expencion noceseary to do this "over"seting operation will be go hith ing
many coses that the prescure of the expandine rivet will many casco that the prescure of the expandine rivet will rip e
hole in the motal. frurther disadvantaco of hamering down a rivet which is to long is that the distortion of the skin is greatero
(2) Buckine bafg are critical ac to weight, shape and the holdine Rorces In general the lareer the rivet the heavier the buckinc ber required. The only problem vith too heavy a bar is the wieht and ability to set into ticht places. When a bar of suificient veight is held square?y on a rivet it has a good "solid" focl in reopence to blowo from the rivet guno Buckine bero of the size of the hend-held "bumping" baro used by auto body ren work prett well tor tho easy to eet at $1 / 8^{\prime \prime}$ riveto on the T-IB. Because ond rivets are herd to eet at it is necessary to hove odd shopod bucking bazo - long bars. "L ${ }^{2}$ ", Osfocto, etco The important thine is to get as much mass as possible in line vith the rivet
boing bucked. h bar vith a small joggle (for reaching inside a part) phks well ifit is backed up by a larse mass on the bar outside. Ti the mass is offset too much from the rivet conterline howeverg you vill find that the bar rotates slightly in the riveting process and a bent rivet vill result every time unless the ber is held a slight amount in the opposite dircction to counteract this teadency to bend over the rivet. The holding forces on the buckine bar are oqually as important as the weisht. Even a heavy ber vill not produce good resuls if it is not held squarely on the riqet with a positive force. Mise sure the bar does not rest on othor parts … it will not only reducesome tendencies to rotate the buckine bar but will also mess up other rivets and perte unexpectedly

Ferhape the moot important thine in rivetine io to keep enough prosoure applied on the rivet gun end the bucking bare Bexore pulling the trigger the rivet should be "Squeczed" in place between the rivet set and the gun and the bucking bar on the other elde of the metal beine riveted. hs the rivet begins to expand during the settinc process the pressure on the bucking bar should be increascd as much as practical。 This vill prevent the gun from denting in a low area in the skin around the riveto This added precoure is copocially important in worline vith light bucking besc and light shect metal.
(3) Gun settines are important too. If the resulting hammerine force if too low the rivet will take a great number of hits to set it and it vill tend to pean or mushroom out at the end rather than expand uniformiy alone the shank, You will also find that the rivet has ascreater tendency to bend, and that the skin takes mere of a beating so that dents are more prevalent. One further disadvantage is that the buckine bar "dences" around for a longer time and $1 s$ nore likely to alip off the rivet or end up at the wrone anglo.

Thereane, I concluded that you should adjust the gun to set the rivet ja juct afey strokes (6 or so) and fire the gun in ohort bursta. rewerve the rivet betveen burste for any necosoary corrective action, 'ion apply pleaty of force to both the gun and bucking bar for the succocithe burots. The screw on the hande of the gun adjuets cun speed and forec. Soreving it in reduces the effective air supply. I found I could do most of my rivetine with a line air pressure of obout 50 poi. For the lone rivets on the inner ving spar a pressure of 80 to 100 poi seemed better. The cun will work down to about 35 psi if necessary。
(4) Fluch rivetine requires that the cun be held very squerely With reppect to the riveted surface with lots of force. If an adeçuete force isn ${ }^{2}$ used you will find thet the eun will tend to dance off the rivet and dent the adjacent metal hgain, panty of pressurc on the bucking bar side io a must. I find that the $\mathbf{c o n d}$ Lord mode a pretty good universal jozm in tho form of a mans vristo hs a result it takes a little talent and practice to one-handealy
hold a medium or lone length rivet gun without olipping Short buits and a firm grip will helf here－－tho gun won＇t olip so much between trieger squeezes．
（5）Bumpins out the fluch rivets is a trick ve learned from John Thorp．hiter you set each countersunk rivet keep the bucking bar in place and lightly strike the rivot area vith a large rubber mallet．The buckinc baf pushes out on the rivet and rubber mallot head depressec the skin surrouncing the rivet．If you observe reflections on this skin around the rivet you can readily learn to： tell when tho surface is＂bumped＂back flat again．Ho matter hov careful you aro you will alvayo find some local depresoion of the ckin by the rivet aet on thin skinc．Heavy buckine bers hold vith lare force overccme thic to a decree but thin metal，beinc flugh with the rivet，is deflected mith each blow of the rivet gun． （Cne ray to avoid this is to use shallow countersinks or dimples and then chave the excess rivet head off when done。）This is a lot of vork and with a little care the＂reeular＂way does almost as vell．

This about sums up my thouchts．hlyeys use the correct lencth rivets and hold the gun and buckine bar squarely and firmly．

FLY－IN－Shoses of us who were fortunate enough to attend the Rockford Fly－In had a chanceto see two very fine $T-18^{8} s$ ，the second and third models to be completed．Dick Hancen＇s 180 hp ship（H299V built by Earl Love）has had a nev paint job since the Junc cover picture for SICRT AVIATICH was taken。 This really io a beatiful aircraft in every respect．It vac flown to Rockford by Jim Robertso

Ralph Thenhaus wasnt able to attend but his T－l8 was flown there by Jack Fark and Lee Hamlin．Many of us vere fortunate enough to get a free ride in this ship．Me passed a het amons the suys who hed rides to help pay for cee．If you had a ride and missed the het，you might want to send a little donetion to Ralph Thenhaus， 6536 巴olbath，Van Huys，Cho This was my first ride in a 125 hp model and I was very much impressedo．The canopy was quite tight and the noice level belov many good factory aircrait．

The Flymin cave everyone an opportunity to talls to other Tmiseas from all over the country．If you picked up any helpful ideas． send them in and wetil print them．I hated to leave before the forum but I was flying my SkyCoupe and the weatherman said I ${ }^{0} \mathrm{~d}$ heve a tough time fetting home if I didn＇t leave before the bad veather moved in．

Here are some things I picked up at the 1965 Flyonn
1．John Thorp no longer recommend the use of aluminum type pop rivets．Their shear strength is fine but tenaion is poord He is usinc monel pops exclusively．
2．Sometime aeo I told you to make counter－balanoc veights（626）for the arti－servo tebs．John says they are not needed \＆should be climinated．
3. If full rightruder and simultaneous full right brake capability is desired, do not cut a clearance notch in the tank cradie. Instead, slice off the side of the rieht rudder pedal for clearance. Filots confirm John o contention that full brake and rudder are not needed under any circ"atances in the $T-18$, hovever.

Landife Genr - During my first veel of vacation before the fly-in, I mademy mein gear and the eneine mount. Sc, the part I feared most is completed. I made the eear in two pieces, to fecilitate heat treatine To give you an idea of the magnitude of this problem, the local heat treat shop says that there ien tt a chop anywhere in this part of the country which could handie the complete feare Merifll Miller found a sho in Detroit which heat treated hio for \$86. including chipping. I'm getting mine done free since the two piece gear fito the local oven. The tubing for the gear costo $\$ 51$ from Machinecraft and I used one set of velding tanke costing \$8.52. The gear vas really fun to buildo

Here's how I went about it: First I cut up the "tubing"? into the proper lengths with a hackeaw. (This is a simple task, but undoubtedly a stiff tect or your endurance.) Then, because I was fortunate enouch to find a fellow chafter member having a $36^{\prime \prime}$ bod lathe vith e oteady rest, I decided to teper the gesr. John recommende a taper if you have the equipment. I made aluminum plugo for the ends of the 1.5 "doubler tubec and tapered them both in one evening. I tapered the lover end with a straight taper down to.0.025" wall and tapered the upper end dovn to 0.000 ". I was afraid to eo to a thinner vall at the upper end since I planned to use acetylene for veldine insteod of heliarc and it vould be touch welding anythine too thin to the $0.313^{\prime \prime}$ tube Then I spent one whote day cutting t'? per on the lover end of the 0.313 tubes. This was more of toblem than for the outer tube. Because of the extra long lencti a tall sock couldn't be uced. I juct uced the steady rest for oupport and clampoc the other end in the chuck. Since I vouldn't offcet the steady rest with the tube clamped in the chuck, I had to cut the taper by hata. This doesn't sound like a very good idea but it worked out quite well. The $0,313^{2}$ tube was tapered down to $1 . O D$ 。

Weldine was accompliched with a recular ecetylene aircraft torch vith a No. 5 tip, For a fixture look a $4^{\prime} \times 4^{\circ}$ piece of plywood and sketched on it the vorious parts of the geare Then I nailed a piece of wood in place to simulate the 526 attachment. point. Several blocks vere nailed on each side of the gear legs to hold them in plece. I tacked all of the members in place and then removed the ascembly for fincl veldinge Welding was accomplished by first, heating the area to be velded to a red color I used $1 / 16^{*}$ Ho. 7 mild steel rod.

Morrill Milier meports that his gear warped during heat treashas to the axle attachmento were not properly aligned．Rather than naving them grourd－－an expensive job for the averace guy－ure juct turned out wedee－shaped shims on a lathe and adjusted them to truewup the aries．I ground my pods to the correct anele wixh a sanding disc on a table saw．

There has been much discusoton about the stifeneso of the Trole Bocx．Evciyone including Jonn Thorp agregs that the gear could be a bit sotior for comfort in taximige There are three vayo mo mate it Softer

I．Several persons have cut of the gear at the croos member and plueged in tailwind type legs turnod out or oolid stock。 Ron 2 immerman made his this way（ater John Thorp did a stress analysis ion him）and it rides real ine，Callibie Woods tailvind legs worked loose where the mounting Jolts went throuch the tubings His A srame also bent since it wosn＇t heat treatedo It io necessary to malre the lees longer due to the xtra deflectiong Ron Zimmerman made has 3尝＂longer．

2．Taper the existing lege and make the cross member lighter as described above。

3．Nengthen the existing inmer tube 3 or 4 inchos． $\begin{gathered}\text { ith or }\end{gathered}$ without tapers I thinls this is the best solution since it can give identical spring constent and strencth to the tailwind type while being onsier to 句bricate and mach lighter．Tho oxtra steel necessary to sill up the hole in the tubing buys you virtually no otrengthg just extra weight。

Tius－Soveral poople have ocnt in this one For a choap dimplang tool，take the mandrol（stem）out of a countersunk type pop rivet and rowinost it backwordso This rivet cen then be priled into a counter ounk block of $3 / 0^{\text {＂}}$ aluminum to form aimplosp \quad personaliy vouldn＇t recommend this for outoide surfaces cxecpt in emexecncies bocause it docon ${ }^{2} t$ produco a nice omooth job the area around the dimple becomos deformed－concaved，You vill make a sexious mistaie \＆you don ${ }^{\circ} t$ try the very simple tool ve described in the may I7 newslottor．

Mon it Eecls ho fly a Tal 3 －Dick Hansen Nas gracious enough to give me a demonstration ride in his 180 hp Tols todayo I had a number of questions about the fitght characteristics of the man so he let me get the answers myselt．

Gettins into his ship is no problom bocause the canopy nitides vell back to give plenty of space between it and the windohield， Also，the side door is very convenient since it reduces the height

Of the step. He had nomskid material on the top of the tunnelg aulane it a convenient step. (Don't clutter up the top of the tunnel with gadgets to prevent using it for a step because uring it in this way permits easy entry and exit without stepping on the peat cushionso)

The seat arrancement was comportable althouch i could have used more leg room - ym 6' $2^{\prime \prime}$. The rudder pedalc had becn moved aft to provide brake pedal clearance at the fuel tank supporto To compensate for thios the seat beck had been moved back about $2^{\text {n }}$ behind the 598 frame, Even so, my lege vere doubled up so my knees vere above the top of the stite The otick had an offset bend which moved : it about af inch closex to the outside of the coclepit. Thio is a GOOd idea for it centered the stick better betweon my lees. Hovever: with the radio console between our knees. I could move the stick only about $3 / 4^{\prime \prime}$ tovard the center of the cockpito.

Gince the upholotery wers applied directly inside of the side skins, it didn toke way any valuable cockptt width at the seato. Although the corner of the tunnel out into my hip it vacn tt too

Cne thing the homebuilder usually forgets about is passencer comport, expecially when it cemes to fresh air vente. On the ground we taxied in real comfort with the canopy open. But when we rulled it shut for take-off it got hot mighty fast under that California sun. Then when we started moving I discovered how effective were the air vents Dick had inctalled. The vents were located on both sides of the fuselace near the floor, just fervard of the main spar. Intaked were Irom holes just under the leading odge radius of the vings about one foot indoard of the junction of the inner and outer wing panels.

Dick made the take-ort by lifting the toil oft alightly efter wo got up to a pretty good opecd and then caolac the main wheels off ot about 80. After we had climbed out of the cmoz, I took over and proceeded to do a ceries of turns. All normal ilight maneuverg could te cone with two fingers on the stick and not encugh rudder to oven meation,

Indicated crusse speed was 160 mph at 6,500 feeto This io about 132 truc.

Having heard rumors that the Tole ${ }^{\circ} \mathrm{s}$ stall is tricky I anked Dick about it. He said, "No, I think it handles es well or better than most factory jobs in a stall, just wateh" So he pulled on the carb hugt and out the chrottle. When the needle read 7o, it started to uftet and thic increased until the cpeod dropmed to 65。 Then the th ving dropped and Dick picked it up vith aileron and kept whipene the stick around to keep the wings level until the nose dropped and he let it pick up speed, I vas surprised at the

EXCERESE FRGM T－10 NEWSLETTERS 1－12 Fage 3I Retyped 26 Nov76
efecetiveness of the ailexons all the vay through

Vken we made our approachg Dick came over the fence at about 35 and greased it right ong touphing down at just under 80 ，He then seemed to do quite a bit of fancy work with the rudder to keep it roiling straighto He let me finish the rollout and taxi back to tia rampo He has brakes on both set ot pedalso

I asked Dick how small a field the average guy could operate a $\operatorname{ral} 18$ out 0 and he replied＂ 2500 feet at first， 2000 aster you Eet the feel of it．＂With flaps he thinks it should cut down on the sunvay requirementso

Wipe Fittings Some people have complained about the amount of machine work connected with the inner wing（602）fittings fohn says these vere purposely desiened to be made on a drill prese and band saw．They are way over－decigned so dont vorry about holdine close tolerances except on themain pin hole Drill through the corners to establish a nice radius，then sav to shape and file out the scratches．

Mandatory Bullettng－The rolloving bulletins are recommended on all $T-10^{2} \mathrm{~s}$

1．Funelage Skin Stiffener－Add a stiticner to the side sifn at the upper front corner or the main spar cut out，Material is $0.063^{\text {tt }}$ thick 2024 T 4 sheet。 See sketcho

2．Fuel Tank Support－It is necessary to provide a stress carrywthrough from the 528 tank support to the dasho This can be accomplished by making an angle bracket from 00033^{*} ornusion or bent up from sheet stooko Attach to the dash v．Hetwo $I / 8^{\prime \prime}$ rivets and to 520－2 with two rivetso Extend tho 528w all the way to the dash．Make the 520－4 stiffener $12^{5!}$ long．

3．Tail Spring Attachment－Two Pailures have occurred at the front tail spring attachment pointo In one case，the 59 ． bracket cracked from fatigue and the other vas a broken 4＂attachment bolt．Change the 591 to one vith the same dimensions made from 0.0904130 stock and change the bolt and plate nut from ${ }^{4}$ to $5 / 16^{\circ}$ 。

Wain Genx－I was ourprised to find that John ${ }^{\circ}$ s gear without vheels and axles weighs 48 to 40 pounds My gear as described in MI 411 voighs 37.5 pounds。

Moking Fibergles Tips－Fabexglas parts can be molded in one of two vayo，with a male mold or a female moldo At first glance，the novice might think that it is much easier to use a male mold since it eliminates one step in the process If you don $\mathrm{m}_{\mathrm{t}} \mathrm{c}$ are about the

2ppearance of the finished product this is probably true Howeverg . 1onger to finish ofi a part made on a male mold than to make a female sold. I have never seen a finished part made on a male mold which looked really smooth although it might be poscible vith enough efforto So, when I made my itiberglas ving tips for the Tmle I used a demale ..old.

The first step with any fiberglas molding process and by far the nost time consuming, is to make a pattern of the part There are a number of waye to go about making a pattern and the builder will usucliy belect the one which best suito his circumotances. The pattern can be made irom soft mood otyroroam, balsa, or plastera I chooc plaster for the vine tips oince it is very inexpensive and yet satrly eosy to shape. Ve have made patterns for nose cowlings, wheeI pants and tail tips srom soft pine but this really taked a lot on whitiinc - about one month for a skycoupe nosecoviing for instance.

If styrofoam is used, it must be coated vith a material which will seal it from the resin. cthervise the resin vill deotroy ito The cost of styrofoam in this area is completely prohibitive.

White gauging plester works very vell and costs about $\$ 1.50$ for a 50 1b baga Mix it vith nothing but water mo sand since it vould make it disficult to shape. Don ${ }^{\circ} t$ dd too much vater or the plaster Will become too soft。

To establich the rough shape ofthe inished part, it is advisable to build a sramevork from cardboard or plywood. For the ving tips. cut out sponvise formers from a at plywood, cut out a notch in each and mount them on a $1^{n} x 3^{\prime \prime}$ board which serves as a backbone The more formers, tho leos guesowork in establishing the correct shape. Cut out a ${ }^{4 n}$ plywood rib conforming to the ving profile and attach the skeleton to it. Set this framevork on a picce of anminum or naxed paper and slap on the plastero The formers should be slithty omaller than the finiohed wing tif dimenoion so they can be cevered with about z_{i} layer ô plaoter Sandine and finishing a surface composed of materials of difterent hardness is very difeiculto

The handiest tool I have found for shaping plaster is a kedy rasp called a "Vixen". used in auto body chopo. It is olightly slexible and tho cutting surfaces are in the shape of smooth semiaircles. It cleans very easily and makes no scratches I consider tt o must for shapinc plaster Very litcle finish sanding is reguinedo If placter is alloved to chire for about a veek it files bettero

The bäre platco pastown vill undoubtedly be silled vith many air holes Filling them in with plaoter is not as simple a job as you might think for the plaster block sucks the water out of the wet plaster so fast that it crumbles betore you cet it amoothed upo Try to fill in the largest holes but dongt be too vorried about the amaller ones. I vacted a lot of time carefully filling the holes Hith red lead body putty but this caused me other problems and I had to remove it.

The plaster must be finished off with a material impervious to reain. We mied laquer on one pattern and found thet if there were any pin ho's in the wax, the resin would sook through and lift the

Laquor Then I tried ordinary watermbase latex vall paint and this Hoxedperfoctly. It dries quickly, fills holes woll, and wots sand vory easily I oprayed ft on to get an even coate I found that if it started to run could just spray the run (while still wot with plain water and it would disappearo About the only prom hlom I nad was that the lasex paint just mouldnot stiok to the putty I had used I strongly recommend this type of paint for sealing a ono-shot type of pattern. It is important that the pattern be Eintshed very smoothly for ito finish will determine the finish on sho final part.

The p-ttern in then covered with oeveral coats or a hard wax Johrinns floor wax is ok. I recommond making a oplit mold for the wing $\operatorname{Hin}^{\prime}$, otherwise the trailing edge must be made too thick. To make a golit mold, the top and bottom half must be made separately The dividing line is formed by cutting a hole the shape of the wing tip plan form in a piece of aluminum and building a orude wooden framevork to support the aluminum at the deatred parting line on che pattern.

Tho mold can be made of either plaster or fiberglasso I used fiborglass to make it durable enough for ro-use. The pattern and parting flance are not absolutely necossary but it facifitates separation. Wax alone worke fairly well. Then onemalf of the mold is laid upo

To get a decent finish, it is necessary to use gelcoat resin for the first coat。 Gelcoat does not get air bubiles like regular rosin. Brush a coat of gelcoat on and lot it stond until sot-upg proforably overnight. I rushod it onco and found that the noxt coat of cosin raisod tho colcoat in placoso

Next cut out class clath or mat, brush on a coat of resin and apply the fiberglas to the vet resin. Now if you haven to seen this oferation performed, it would be wise to get a demonstration from someone who knows the rofes. It is really quite simple, but tt is really messy to learn the hard way put on two or three layers of heavy fiberglas and then cut out some cardboard "ege orate" stiffeners and apply to the mold with resin to make the mold as ricid as Fossiblo. Stiffnoss can be covered with elass eloth for exded stroneth. A flance of about 2^{*} should be made at tho partin "ine。

Aftor the mold has set-upp turn it over and remove the aluminum parting linc form. APply wax and PVA to tho fattern and parting flance, Then lay up the second half of the mold like the first. fiter it has set up a littlo prying vill then separato mold from pattern.

To mold the wing tipe do one halp at a time fifter the mold aas been sanded, put on about 5 polished coats of hard paste izxo Chen follow with PVA sprayed on very very lightly If it starts to pile up in Globules wash off with water and otert overe Then apply gelcoat and two Iayers of 7 to lo ounce glass cloth. While the resin is still rathor soft, trim ot the rarting line with a sazor blade. (Note \quad o years later. My tips held up fairly well, but people do like to squeeze them. Might help to cement in several reinforcements after they are joined, like $1 / 8^{\prime \prime}$ plywood rits run spanwise for a few inches in from tip.)

Materials Ist John Thorp has not made a materials list for the Uy but hinowles has a catalos which acts as a farimy complete materials zist. Ken Knowles Sporthircraft, Inc 27902 Alvarez Dr, Qancho Palos Vercies, CA 90274。 Merrill Jenkins. 2413 Moreton St Torrance, Ch 90505 also has a free cataloge In 1976 a these are the two main sources for T-18 materials.

