L. D. Sunderland, 5 Griffin Drive Aoalachin N Y 1373 ?

Using wing Skin Templates - As ou knrw. I have two sets of T. 18 skin templates circulating around the country. One set is for fuselage only and the other set also includes inner and ruter ving skins, horizontal tail and rudder. The donation for use of these is \$3. For the fusclage nn1, and \$6 for the more complete set. in case vou've used them and forgot to part Each user pa's shipping to him These templates were copied directl" from T hn Thorp's riginal templates.

Manv T-18's have been huilt from the fuselage templates ith no problems to m " knowledge hnwever I have not heard an reports from anrone tho has used the wing skin templates so don't know how they are working out, I'm crncerned that there may be a tolerance build-up problem if they aren't used proper'".

Here is a way to use the wing skin templates wich rit1 insure. that all holes wil1 1 ine up

1. Transfer all spar rivet holes in both nuter and inner skins. Transfer wing walk rivet holes in inner skins.
2. Scribe around all outer edges of the templates.
3. Transfer and then punch onlv one complete row of rivet holes for one rib in the outer wing skin.
4. From this row of holes, a transfer strip can be punched directly from your wing skin.
5. Then use your new transfer strip to transfor all other rib rivet holes. The original templates could be used to mark, not drill, several rivet locations for the top and botton of each rib just to help locate the transfer strip.
6. Make your rib tooling and transfor from the transfer strip to the master rib.

This procedure will work just as well as the one described in the Building Instruction. Using the skin templates will quarangee a good straight wing if you also take the few steps described in earlier newsletters on using a carpenters level during final assembly. of the panels.

Here are some very important tips on using the templates. 1. You must have a smooth, flat work surface. This means something Tike a new, unwarped piece of plvwood, ar better yet, chipboard or particle board. You can get by with a 4×8 sheet, but $4 x 12$ is much better.
2. The templates are made of. 075 sheet so must be handled with respect.
3. Never drill or punch through my templates. Use only a duplicator punch to mark through them by tapping with a mallet. This can be a punch out of the Whitney punch set or one you made on a lathe. Why not drill through the templates? It you don't know this much, y u definitely shouldn't be building an airplane. Yet John Thorp tells me he often catches people drilling through his templates. But why not punch where possible since this can be done without enlarging the holes? Yes, it can be done if the nib is ground off a Whitney punch, but you can also slip up now and then and catch the template. You are certain to do this sometime. If each user does it just once, it wouldn't take long to ruin the templates. Please cooperate.
Matched Hole Tooling - II. R. Yoder, 1047 Dolorita Ave., Glendale, Calif., 91208 - I Just received Newsletter No. 28 and found it most interesting reading as were all the others.

I would like to add a comment to yrurs about matched hole tooling. Ed Henderson and I also had doubts about this type of construction, because all out past experience had been on massive

Jigs. After building the ailerons and flaps to test John's templates and our own rusty but not forgotion sheet metal skill, we started the wings, starting wi in the spars. Again we used Tohn's templates and fabricated all parts for the center section and outer panels, and after completing these parts with tongue in cheek we assembled the outer wing spars to the center section spar and were able to finger press $1 / 8^{\prime \prime}$ rivits into ard through the \#30 alignment holes for the spar attach bolts. As you can see we are convinced matched hole tooling works.

As for a progress report we have completed to date both ailerons, both flaps, rudder, fin, landing gear (arc welded) all wing spars, all ribs, wing skins layed out, cockpit flight control and many miscellaneous geodies in the making.
Engines - By M, R. Yoder - We purchased a $3 \geqslant 0$ cu. in. Lyc. corplete from firewall fr rward including all accessories plus constant speed prop and spinner, frr $\$ 1000$. This engine has 700 hours since factory remanufacture. These engines are being removed from piper Apachies for a larger Franklin. If anyone is interested in an engine, contact: J. TV. Miller Aviation, Box 16203 International Airport, San Antonio, Texas, 78216 . These people welcome inspection and will crate and ship an engine for a fee.
How Not to Photograph Airplanes - Did You ever notice how some photos of airplanes look like an amateur snapshot while others made with a comparable carera will look prefessirnal? One of the most important factors in photography is the viewing angle. A favorite viev of amatuers is from about 15 degrees off the nose and 6 feet off the ground. For small homebuilts, and especially tail draggers, this makes a rather unbeconing picture. A good rule is th get down on the samelevel with the subject. Haven't you noticed that when a TV camera takes a picture of a girl walking, they never vien from a point level with the top of her head? Thev always get right down where the action and interest is. Still photos are the same. Just leaf through seme back issues of Sport Aviation and see the difference viewing angle can make. Sure, all pictures should not be taken from directly off the wing tip at mid-heioht level, but the further you get from this position, the more distortion-unless you are trying to emphasize some particular feature.

If you include people in a photo which is primarily meant to be a picture of the airplane, get them out of the wav - either inside, below, beside or behind it. If the airplane is only background, that's different, treat it as such and concentrate on the subject.
Cracked Fxhaust Stack - After re-welding broken off or cracked exhaust stacks about a half dozen times, I called John to find out what to do. I had a cross-over sustem with no slip joints. If you don't know what a cross-over system is, it is one which has two exhaust stacks and exhaust from the right front cylinder is brought across in front of the oil pan, joincd with that from the left front and exited through the left stack. Fshaust from the left rear is also taken around in front of the pan, joined with the right rear and exited in the right stack.

The problem is that when the erigine is running, there is relative motion between cyificiers. we ve all learied that you can't tie two cylinders on olie sidie vegether with a solid cooling baffle or it will erack. The same thath aralies for the exhaust system. The solution is to itt a silip loint between each piir of cylinders just like on the Cherokee.

But how do you make a slip joint? John has a set of dies to make one on a press, but thet doesn't help us. So I decided to weld up one. For material, I used one of the stainless shrouds that were around the short stacks on my GPU. BY slitting one ith the chrome blade on my table sal, I could form it neatly to fit tightly over the exhast tube making a sleeve. The sleeve was made 3-1/2 inches long and the slit was welded up. To leep from having any weld material run through the erack, I slipped the sleeve over a 1 inch steel bat that was clamped horizontally in a vise. It was welded ith the slit facing upward so that the tube contacted the bar just under the weld seam. Surprisingly enough, it didn't make loo much of a heat sink but did make a perfectly smoch inside seam. Now, cut the exhaust tube at the desired location and slip the sleeve on the downstream siáe of the cut, Overlap about $1 / 2$ inch and weld. The gas shoyld have to reverse direction in crder to escape frim off about $3 / 8$ inch off the end of the tube which slips inside the slecve for clearance. Presto, a slip joint which John says will end cracked exhaust problems. I've got my fingers crossed.
Welding Stainless Until now I have been getting all my welding of stainless done by heli-are because. I couldn't seem to make anything but a mess with ges. But acter seejing a demonstration with gas on top of not being able to get my heli-arc man when I needed him - I decided to learn or bust trying, Much to my surprise, it really isn't quite impossible. Here's how I finally succeeded. First you need some flux and some $1 / 16$ inch stainless yelding rod both available at your welder's supply house. Clean the joint well with a steci brush and nake sure the parts fit well with no big cracks. cont the joint and the rod with flux. Nrw, light up, say a little prayer and begin. You will notice that at about the time a nice puddie wouldbe starting to form in ordinary stect, the area under the flame suddenly caves in and you have a nice hole. Lesson one: there is no visual indication of temperature like 4130. Then you melt some rod over the hole which for some reason wants to either eave in after the first, or make a rather obscene looking pile. The pile is stubborn and onty gets bigger as you dab on more rod. Lesson two: you can't shape the puddle with the flame in the normal way, in fact, it should not be pucdled. Sn, how do you weld stainless? Let's try it again. Heat the veld area and apply a little rod before it caves in. About the time you thin. you have some rod floving on, sparks fly and a bubble erupts from ithin, making a pop! and a real mess! Lesson number faur: use a very carbonizing or reducing flame. N W, I thought this meant just a little bit more than the normal feather af excess acetylene normally used for welding 4130 , but I discovered that my trouble was that I needed more excess acetvlene. Then things started working better. Two other pointers should help. Normilly, vou weld 4130 easier if you progress up hill, but stainless yelds easiest if you progress dowhili. Also, I found it works best if you weld backwards with the rod held behind rather than ahead of the threh as jt progresses. Point the torch toward the alreadif formed bead. Apply rod sparingly. Keep the red bathed with the reducing flame. Don't be surprised if it won't win a beauty contest:
Clecos - A very popular question among T - 18 ers is there do I buy clecos?" To my knowledge, the surplus 4 f clecos are about all gone. So you will have to pay the new price. One place ou ren obtein them is: Spencer Aircraft, 8410 Dal1as Ave. Seatte, Wha, 98100 , The price is $\$ 39$ each. frr 100 or more, the price is $\$$. 30 .

You will need at least 100 . Yru micht get by with 50 , but the price difference is so little that yu should get lo0. It dill he easy to se11 then and vecover mest of this cost.

Fust heard that spencer has cecenth got a shipment of 6000 clecos, $1 / 8^{\prime \prime}$ size, and is selling them for 1$]^{\prime}$ i each while they last. This time, don't pass it up!
Tailwheel steexing Serings During the first 150 hours en my t-18 the springs on the tailgear became uncoupled at least a half dozen times. I tried scveral different weight springs and bent the ends in more, but still they became unhoched. I finally frund a fix that really werks, and makes grourd handing much easier. I simply restricted the amount of etreteh of ench s, fing with an extension of the connecting chilin. New thith iote mad about 6" longer than normil., The fitst link of a chint wis hooled to one end of a spring and the same end of the sprimg th ther hooked th the hern on the tailwheel. Then the chatin tas heriked to the fther end of the spring In a link which pexmy ts the fut ing to stretch about an inch before taking up the sluck in the ching. The chain then continues on to be hooked it rudder horn. Since mating this change, I have never had an unhooined spring and directional conirol is minch improved. This along with the longer, softer main geat legs, has really made a world of difference in $\mathrm{my} \mathrm{T}-18$. I strongly recommend both.
Taxi Tests on 356 bu Dick Thlen $-I$ have started taxi tests on No. 336 and have fourd that it s a bit more than I can handle ilght now. I'm not familiar with the tail theel so i'm checking out on a 125 hp Pacer. When I get her up to about to to 50 MrH and reduce ower I have flishtail problems. I'm just not proficient enough to iandle it yet.

The noise level is surprisingly low. The cockpit is fitted with styrofoam 1 " all around with rolled and pleated upholstering. With the styrofoam fill ing the eavity betveen the angles, the uwholstry is flush from the seats to the firewall, fiere is seme data on construction ant equipment: 3 years, ? months to builit; s5000 total
 Al ta 200 Gerive radio: Irip from 3 T 30 Cliprokee anipated to fit extention, 66° cita, $70^{\prime \prime}$ witch tright, cto lbs. Engine will turn 2200 stutic, $29^{\prime \prime}$ in with the taill ted down. Educe's Note: The foregoing commens a wout Dick's taxi tests are ict surpcising for cue reasons. first, the difficulty in majntainung a ecectional, ceneot when the theoctle is cut under 40 moh is tyuied. It is the only time a m-18 eculd be sa id to be even siligh cly hatd to hmile. second, all his experience has been in nosegent a inplines. For this reason I recommenided that he find an expolienced til gerr whot to mate the tert flisht, for making
 be ebine to hardla an athplato, the pilot should be able to handle al 1 the unexpected thinct, when can cecur without worrying about normal coritiol of the aineraft.
Euel, Syutens, B.D. Fim, fi. 3 fiox 703, Orlando, Fla, 31811 sent a sper il ot a thet stuluer meye from a brise elluw into whicha
 had a foreed ludirg in his ajumethl eruger wion a moln goti into the fues tanis and clogged the ouclet bechuse there wh ho chelet

Th you mole vout chri, dent restrite the bole in the fitting anv. Lrell out the hole in the end of the fitting that sereus into
the tank so when the screen is inserted and soldered, the tD will be as large as oriqinal. Cutions stnce items sum as thas canot be easily visually inspected, make a suetch of your fuel system and show it to the FAA inspector befone the final inspection.

Here are a few tips:

1. Use no smaller than $3 / \beta^{\prime \prime}$ fuel lines.
2. A flexible coupling must be used between fuselage and carburetor. This nust be a high pressure type hose.
3. Make sure there are no low spots between tank and sediment bow where water could lay and freeze.
4. Make provision for easy access to a quick drajn on the bowl.
5. Disferent carburetor kits are used when a fuel pump is used. This is not easy to got the straight scoop on. . Don't fly until You've checked'with someone who really kaows.
6. The fuel tank vent should have a screen to keep insects from building nests in it.
If you have been reading the aviation Iiterature you will
recognize that alt of the above items have been involved in accidents or at least engine problems.
Making Fuselage Frames - Peopje continue to have trouble bending up the fuselage frames. Common troubles are cricks at lower corners of the outer flanges and cracks in the inner flanges. Here are my recommendations.
7. Don't use a brake to bend up the outer flanges unless you are so good you don't need any advice.
8. Get a 4×8 sheet of chipboard (particle board) and sat sut some forms. Be sure to make adequate bend radi. Also, areass be joggled can be a little on the "deep" side due to springbact. Make up a little sample and experiment to get the proper size joggle. 3. The inside flanges of all franes are shom on the pians to be bent down 45 degrees. Do not, however, make a 45 degree bevel on the forms. Cut the form at 90 degrees.
9. Using a rubber mallet - the type were the mallet is one big: piece of rather soft ruber stuck on a hande - bend the insiae flange down. All strafght sections whoula be bent down 90 degrees but the radiused comers should be bert down only 45 degrees.
10. Make dheclutely sure that you rucst remoyed ajl scratehes from the edges of the shect material. The best wy ioto first draw file the edge after cutting and then with gerdrapew watped aroind a stick, rub parallel to the sheet odge until notes and sorateree not parailel with the edge are removed. Slopiness with cleaning up shect edges seems to be one of the most prevalent probiens rith notioe tin benders, yet it is so very oasy to do. Don't forget the stanley Surcform rasplane for all straight e日res.
11. When fomma the inner flange at the rounded comens, you can get a very mo th job if you stijue the motel with the milet using a wiping stacke parailel with the sheet eroe. Don't forset tha: 7. Now for the $\$ 64,000$ groxtion. rinet do you do if you wadi a frame? If you have spere moteat, you naturaly can mak a new part. However, it is perfectly acoeptaide co stop-aryil or ont out the cracked matorial and prit a spate orer it astig the wme stock. For sale - If it ham't aneady bean sot, Jeray whueves 95%

 is the arobient monthoned an mevele?ten rio 28. whe tave was apparentiy a spin or spiral foliomiag a stall. He mev have been
trying to stretch a glide fith a dead engine because the propeller indicated it was not developing power. There were no structural. problems. If you know of anyone interested in buying Jerry's nearly completed $T-18$ which reportedily ranks second only to Basye's. contact Don Pridham, 3730 Jarkstone Dr. orange, Calif., 92667.
Letter From Russ Basye: (T-18 \#72, N372RB):- Sure sorry I missed you at kockford but I fully undesphad about weather. We ran into weather just west of Omahe and went back to Grand Island, Neb. on the way to Rockford. I found where the $\mathrm{T}-18$ leaks: At the rear of the canopy where the hip skins start.' ve averaged 184 mph (not counting return to Grand Isle) takeoff to touchdow going to Rockford, and 155 mph coming home.

In my opinton the T-l8 is the nicest flving airplane I've ever been in. After about 20 hours I finally got the canopy sealed and with the sound deadening material that was put in (aluminum foil tape and polyurethane foam) it's noise level is about halfway between a 172 and a Bonanza, so it's real comfortable for crosscountry flying. With 39 gallons of fuel it will go safely about 500 miles. I have my pitot and static tubes halfway out the wing outer panel underneath. It stalls when the indicator reads "0" mph and after fiddling with it for a couple of months. I am not in the process of installing it on the fin as por plans. Otherwise I have had no problems -- the retracting gear works fine although I have to retract it under 85 mph or I can't got it up. A wind tunnel would probably show me where the air loads are that keep it from going up. It's just the last few inches where it gets hard to pull up.
Performance Data Duestionnares - For some reason, I have received only six completed ouestionnaires which were mailed out with Newsletter 28. Out 0 e the thirtv-some alroady flown, this is a pretty poor score. I know that some of them are laid up for maintenance or modifications, but you other guys can obtain the necestary data. It mill be of immense value to everyone, so please try to get the deta and return the form as soon as possible. The weight and balance data has already been put to good use by many who are about to fly.
Letter From Herm Rassler: (He's rebuilding after a forced landing when a dip stiok cane Inose.) - Think it's about time for a status roport on the rebirth of No. 24. Hisve the sings, fin, ailerons, rudder dowe through prime, fuselage up to fircwhlt except for viring, instruments panei, and a few tunnel parts. Have most all the parts rounded uy to complete late summer or early fall. Need cool weather for testing. Should be shat 50t lightor, 25 mire horses, smoother and faster! I built twat into the wing roots. If anyone is interested, 1/16" off square (diagonally measured) vill give approximately $1 / 4$ degree twist.

Bought a Rattray $\mathrm{r}-18$ nose coml. The one in the rintor SA ads and at the Fiv-In last sumer. The work is beautiful but it won't fit over a Lyc ring gear. Sent it back for refond and he sent one he has designed for a 180. creat big ugly thing (my opinion) sent it back about two months ago. Now have nose and belly panel from Hemlin. till have a 290 sump, vacuum pump and reguiators, and electric flap actuator for sale.

Am enclosing a tester for checking ansoceeds. You onn make a manometer with clear tubeng and a varcistiok I thick ithis is more accurate than flying alongsiae one of thoud factory span cans.

According to the article I got it from, alt airspeeds are off somewhere along the scale. Only some are worse than others. One could make up a correction card just like for the compass. This won't test the static sysiem but x think teeing amonometer into it would also check for good swatic.

Sure wish someone would come br and give me another ride in a T-18。

Use food coloring to make water more visible. Blow up pressure and hold to check for leaks in the system. Eaitor's Note: Bench checking of an airspeed system does not guarantee accuracy in flight. Getting a good static pressure source is a big problem. Note kuss Easye's comments. The only way to be sure of accuracy is a good calthration test over a measured course. The bench test should be run before first fight G- back and read Herm's test flight repnrt to see wh. This is not an isclated case.

Joggles - John Purvis, 2925 Mareo Way Marco Way, Carmichael, Cal 95608 Perhaps others are cissatisfied with thenr efforts to achieve good .093 joggles in the $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \# 580-14$ stiffness. My soluifon is too simple to be new but just in case - here gces. As indicated by the drawing, a 3/4" alumirum bar is shaped as shown and with a backing plate of handy aluminum - say 1/4" thick, is with the extrusion between, clamped in a vise. The punch shown is used to direct the energy of a hammer directiy onto the standing leg of the extrusion. As indicated, the left end of the bar is glamped in the vise, and the right end where the joggling takes place is relieved sufficiently to permit the standing leg to move downward. The relieving can be very slight. If relief is too extreme the standing leg will wander and produce a wavy result. The $3 / 4^{\prime \prime}$ bar is clamp ed and relieved on both sides so right and left parts can be joggled. The demenisions do not appear to be critical and one bar wili also set the . O62 joggle just by using a lesser hammer blow. The punch shonld be used, because direct application of the hammer to the part will "ding" the part. My results have come out real "pro".
Fuel Tank Straps - John Purvis - perhaps another idea that's obvious-good results in bending the fuel tank straps to receive the bolts on each end have been achieved by placing two rods of $7 / 32^{\text {in }}$ diameter vertically in a vise - with about $1 / 4^{\prime \prime}$ between them. The stzap is then bent by inserting the strap between the roas about $2^{\prime \prime}$, and swothly pulling the long end around until sufficient bend is obtained. The strap is allowed to "unwind", and is continued back in that direction until the short end of the strap can be used to press against the long end of the strap and cause a bend, identical to that first placed in the short end, to be placed in the long end. It works real fast and results are excellent. If any imbalance exists between the two sides of the bend, one of the rods can be placed in the loop and the strap clamped in the vise, and the loop tapped lightly to the appropriate side to create symmetry -- holes are then drilled and waste trimmed off.
EIUS JOHLSOL'S PROQRES - (Con'td from page 10. Somm about that:) Just cot another letter from Bull Which \%ou should heer so I'll stick it here where I was planning to out. figure. "walle invtalling the ner vertical stiffener at ctation 70 , I noticed another possible nechanism which could have sone bearing on the 601 looservivet rroblem. Under foads, the 601-2 clin tranmits loads to the lover. Iongeran which bill tend to rotate about a longtudinal axis and tend to move the center of the clin thru a lateral diutance. liote that during positive efis is inboard and during negative g; outboard of the tatic position. I an modif,ing the clip as shom to rewist rotation.

Joggling Angles - Malcolm Fowler - (1.) This was how I solved the problem of those - 10 brackets in che center section of the wing. Worked very well with no rejects. Make a hardwood block maple or birch) 2" longer than bracket, bandsaw to profile making the angle sharper than called for to allow for spring back. Kerf through the center on bench saw. Insert flange in kerfand clamp tightly ft high end, hold block as low as possible in vise to prevent block splitting then beat the $3 / 44^{\prime} \times 3 / 4^{\prime \prime}$ angle down.

(2.) Another quickev to joggle $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ angle as in forward fuselage modification. place angie, not too tightly in soft jawed vise, support horizontal flange with spacer slightly thicker than depth of joggle. Hold heavy block of steel on top of angle and hammer the unsupported end down.

FOR SALE - 6E3 RID WhiCh 10000 per pair plus shipping Includes plater steel tubes form Dibble, ROt, W, Windsor, IN.
Dimpling and Pivoting - D. Hendrick, Anchorage, Alaska - Fo: dimpling, chuck up your male die in a dill l press and the female die in drill vise. Thus you don't spend time hunting the hole in the backs up. Works well but is limited by depth of drill press throat. Another idea is the use of masking tape on face of rivet sets. Helps keep us matures from murdering rivet heads. Also, use tape to hold a line of rivets in place rather than install ore at a time. Also use tape to keep compohentre in position.
Rivet Guns -Bert NEeholson, 3712 Riviere place, North Vancouver, B.C. I see that rivet guns at $\$ 39.75$ is considered a good price. I purchased a Florida Air Hammer from US Industrial Tool and Supply, 13541 A bury, Detroit, Michigan, 48223 for $\$ 18.75$ plus retainer spring and rivet sets at an additional \$12:00. I bought the little regulator valve locally. This tool is listed in the US Industrial Tool and Supply Catalog H258,

Page 72.
Bill Johnson's Progress - As you know, Bill is modifying his $T-18$ to install a retractable conventional gear. He has made an entirely new wing using a different afrfoil with no camber, which he says isn't needed with flaps. His gear is now mounted on the wing spar and the fuselage is about ready to button up. When he removed thewing and inspected the rivets around the ends of 601, he found the rivets loose. Although he had not made the wrap-around modification, he does not think it is adequate to distribute wing loads into the fuselage side skins. He has done a pretty thorough stress analysis of that area and says an additional doubler is needed to transmitloads from the $\mathrm{B}-580$ foubler to the dash and side skin. A total of 12 rivets is needed between the $B-580$ and the new doubler. The doubler, shown below, is a 15.5 inch long piece of $0.63^{\prime \prime} 2024-\mathrm{T} 3$ bent up as an angle $2^{\prime \prime} \times 0.6^{\prime \prime}$. One is placea inside the dash at each lower corner. Except for the extra rivets in $B-580$, use the normal rivet spacing in the dash. Rivet spacing is $1 / 2^{\prime \prime}$ minimum in $B-580$.

I believe Bill has checked with John on this and he concurs.
Anotber Tri-Gear - R.I, Moore, 3327 Fenimon, Corina, Calif. 91722 sent this letter about progress on his tri-gear T-18. "I wish to thank you for publishing the $T-18$ Newsletter. It is informative as well as a source of inspirational fuel. When I start to lag on my project I reread some first flight reports. I have serial number 442 and like many have made modifications. I do not claim to be an authority on Acronautical Engineering but I do have an ajrcraft background. I'm a retired (Navy) Chief warrant Officer, Aviation Maintenance Technician is my specialty. Retired 1960 after 21 vears in Naval Aviation. I'm presently involved in aviation as an Aircraft Division Manager of a small plant making aircraft structural parts. I'm making a tri-gear (retractable). The drawings wee completed prior to starting my project october 1967. I have rudder, fin, ailerons, flaps completed. The trailing edges were spot welded instead of being brazicr head riveted as per plans. It makes a nice smooth surface. I used the . . 040 reinforcing strip as per plans with 426AD3-5 rivets spaced approximately 12" for holding edges and strip until spotwelding. First the holes were drilled then the skin portions were dimpled (both sides) then the strip countersurk to receive the dimpled skin. A rivet then was bucked until material filled dimple. Excess rivet then was milled off leaving a flush head both sides. The edges to be spot welded were etched, thoroughly neutralized then spot welded and finished off by dipping edge in zinc chromate primer. Some test strips were made and pull tests made which were quite satisfactory. I'm presently skinning the outboard wing panels. Since I'm using the D section of the leading edge for extra fuel. I have increased the number of rivets in the spar and skin as well as using epoxy at the joints for sealing and strength of skin to spar and nose ribs, beam web to spar caps: Interconnect between outboard leading edge and center wing leading edge is accomplished by beaded tubing fittings, hose and clamps.

The wing tanks will be filled at the wing tips. The nose ribs serving as slosh bulkheads. (3 ea) l" lightening holes plus suitable $1 / 4^{\prime \prime}$ drain and air bleed holes in the nose ribs. I'm presently worming on the center wing. The modified spar is completed and am presently cutting and welding up the main gear fittings. To take the heavy shock loads of hard landings, had to beef the spar using two upper spar caps with additional rear web making a box spar."
 Ing tin light cove. first, cover the fibrciasis tip eth outing flannel in the area where the lute will be. Heat a niece of nleximless in the oven and stretch down over the fiberglass tip using broad jawed liars or clams. Tiu takes two people. Cut out the fiberglass as desired. Maize two fiberglas bulkheads and cement into the tin. See Figure lv above. Instal lite on bulkhead. Make two pliviglass bulkheads. Cement pleadasis cover and bulheras toretren. Instal with two \#8 cereus into plate nuts located behind fiberglass bulkids. The screw on rear bullhead can be installed with a long corewdriver through a hole in the tip of the one plexiglas bugled.
FOR SALE - Callibie Wood, 1121 Forest Hills, Wilson, N.C. 27093 says he is about ready to sell his m-18 because he has a 4 -place nomebuilt about completed. It has a 150 hp engine. For more details, contact him.

Propel ers - Here's an interesting letter from H. O Beckett which he sent me a long time ago before no flesh his T-18. This might have been written before sensenick decided they would no longer cut dom props. The comments on harmonic modes should be of interest to everyone. "Wy engine is compiled (0.320), and I bought a brand new Sensenick M74DM prop, cut down and repitched $67-68$. To order my prop, my wife and I drove up to the sensenict factory at Lanosister, pa. We spent about two hours at the factory in discussion with Mr. arse, who is in charge of Engine sang. Mr. Pose also states that overspecaing the $0-320$ beyond 2750 rpm red line should in no way bo harmful. However, he does state that there are several vibration ranges which are to be avoided in order to minimize fiances of hammond modes of the prop ard engine. He says that each inch cut from the basic 74" diameter prop will increase the th order (I believe) which occurs at appoximatedy 2400-2500 rem, by 100 rpm. Fe was not able to supply me engineering data on the 67 "xt" or xenomended arsing rpm. inc. bice saps that operating on this tambac could dads prop and/or shaft failure:" Amending to my figures if you cut off 6" you raise this frequency to over 3000 rpm - fax beyond anyone's cruise speed.

$$
\begin{aligned}
& \text { - LlI suosusbでy } \\
& \text { ssouj N GOL } \\
& \text { - if POOM - y. } \mathrm{C} \text { • } \mathrm{LOD}
\end{aligned}
$$

