W see f'm still rumint true to form as far as getting things done Fon the $r-18$ newsletter is concerned. The Feb. ' 85 issue 1 hoped to 4 get out is now the April issue (if too many other distractions don't show up lefore $I$ get it completed. Sorry, again. gents. My good wife
says $I$ just have too many irons in the fire all the time. She follows k that statement by saying, "Yes, and some of them seem to get cold pretty Hthat statement
Jregularly. too.
r'll have to confess that my editcrial and writing work for sport Aviation. Lightplane World, and the Antique' Vintage magazines nave kept me far a little before Xmas, cranking out around twenty stories since then. Each one requires considerable time spent in research, follow ups, shooting pictures, doing interviews and then transcribing the tapes, etc. and when most of them have to make deadines I have to rearrange my priororities on an almost daily basis. There are compensations of course. I recently had to make a 4 day trip to the LAX area and did manage to squeeze in a dinner visit with old friends, Dan $x$ Stella Dudash. I also did a story on Ken Brock, his plant, his Auton 0 gh got to fly his 2 plare gyroglider (was fun :). saw his home workshop (unbelievable) and his new T-l8 (it
had the most fabulous engine installation I've ever seen on a $\mathrm{T}-18$ ). I
Ualso got a quickie look at his "Sweet Marie" T-18 and his award winning Stinson at Corona Airport. Ken has a hideaway cabin out at El Mirage dry lake, out close to Edwards AFB, where we flew the Avion and the gyroglider Hand while we were there Bob Hovey came in to Ken's airstrip in his T-18. II'll be going back out soon to do a story on him and to fly ken knowles Super Delta Hawk u/ biplane. Sernan curse on me for getting so close to their home in corona and not coming by, but I had to hustle and get back to LAX for the trip home.
That trip used up four days, plus another week of writing when $I$ got back and then it was time to hit the road again for Sun $n$ Fun which used up another ten days. I had to spend $95 \%$ of my time with the ulta I hardly got to look at the t-18s there, much less visit with the builders I did get to spend an evening with John and Lee walton over dinner. I've been hot at writing ever since I came back home, along with doing the Xusual non-aviation chores, like yard work, painting, etc.
Well, anyway, amigos. I really haven't been goofing off as you probably thought and I've had the best of intentions about the NL. I hope to get out three more issues this year if you guys will cooperate and send in stories of your labors and experiences building and flying your T-18. If you can type it up so I can simply do a paste up on the page, so much the better, as far as my time is concerned. If you can't, just write it out in longhand and I (hopefully) can rewrite it In any case, please keep the accounts coming or our well of information for the NLs will run dry. Plz remem ber, too, that just because somecne else has written ann account of your subject, don ter that stop you. it s of alue to builders to learn that more than one builder concur with the techique or process and have used it successfulily.
I was pleased to receive the survey forms that were sent out with Ni,f $6 l$. You also are interested in who won the drawing for the Narco HT-800 hand not have. picked a nicer guy if we had tried. pete has been a NL contributor several times He has an $0-290$ g powered $\mathrm{T}-18$ and he has it out of service for awhile ar he is installing a turbo in it. A friend with a computer

T-18 NEWSLETTER \#G
paqe ?
is now writing a program on all the material that was covered in the survey forms and once he finishes that we'll pulish results of all the categories in the Nif. Probably all of as will be surprised on some of the items. I've already noticed a variety of propellors and the different diameters and pitches used. Cortelating that with performance in the various flight regimes should be very illuminating.
In fact. there will ke a wealth of information in various categories that should be valuable to the beginner, as well as to the one that has flown his airplane guite a number nf hours. I am somewhat disappointed that his required send the form in rould like to encourage tou fo rake a fow inute to fill it out and seni it in now. Most all of you at one time or another have said, "I really appreciate the NLs and wish I could send something in, but 1 can't seem to think of anything, etc". Well, now, here's your chance to do something for the NL. . and it truly is valuable info so PLEASE send it in....before vou forget it again. If you have lost or have misplaced the form let me know and we'll send another.

In case you don't read FLYING or overlooked it the may 85 issue carries a full page ad on page $4 l$ about another hand held $720 \mathrm{t} / \mathrm{r}$ that sells for $\$ 299.50$ postpaid. It carries a 90 day satisfaction guarantee, you free 1-800 230 the 1800 masterca, and you can call them on a toll has a 3 year quarantee. With 24 hour service. It stores 10 channels and The Narco Hr-800 does and about the only aiferencpears to then and controls were in the top of the unit instead of the bottom. It sure looks like someone is giving the long suffering pilot a break. When I up to $\$ 600$, instead of the $\$ 476$ Said that was only a temporary promo (7) up to $\$ 600$, instead of the $\$ 476$. Said that was only a temporary promo friends Maybe so, but it sure smelled of ripoff to me. T had several han and STS, satellite Technology services and their adaress is $2310-12$ mill Drive, st Louis" mo, 63043 Just yesterday a friend of mine got one and ret me try it. It worked great. He has used it in his airplane and had no problems working the tower 20 miles out. Now if we could just get a low cost VOR.

As a matter of fact. I'm in the process of doing some research on an article I'm about to write for Sport Aviation on an all new system that Vyou an y will locate you anywhere with a $\mathrm{f}^{\mathrm{l}} \mathrm{ft}$ accuracy, but also give nearest large flat field... plus literally dozens of other functions not qavailable today. It will cost about $\$ 400$ and be about the size of a cigarette carton. It's called GEOSTAR. It may be available as early as '86. Mark that name down. You'll be hearing lots more about it soon.

GEAR INSPECTION ALEERT!:!:! BRYANT ROWLAND, 1007 Shell, MidIand. TR, 79705 , 915/683-6617 called me last week to tell me that in the process of doing Jan annual that he had discovered cracks in the weld where the gusset and Sthe gear leg tube meet. cracks were about 4 " long and were on both the front and back side on one leg and on the front only on the other He has about hrs on 1
 LLas vegas and some of the documentation was incomplete.

Bryant's as yet unsolved problem is what to do about it. He can get it re-welded in Midland (Heliarced), no problem. It has to be re-heat treat ed then and that IS a protlem. There is a heat treat co here in Dallas (Dominy)that does work for Bell and others and has an oven large enough to handle the gear in one piece. The cost is around $\$ 100$. Several year ago. (10 or 12) three of us went together and built long gears and had them heat treated at Dominy for $\$ 25$ for all (the minitnum), but we had to have them run the second time, as they were cery care Even after the them when they came out of the oven and let them warp. Even after the 2nd go 'round we had to insist they use a large press to get them accurate I called Ken Brock about Bryant's problem, asking him what in his opinion is causing cracks. He said possinly we should be asking the kenn ken hald as course I am reluctant the of the gears his firm made have ever had that (0) problem, but he was inclined to think that the gear might not have been 3 ptress relieved (annealed) before it was heat treated. When I visited his plant he took pains to show me that every weldment they made from enqine mounts to landing gears went into the annealing oven for stzess relief before keing heat treated.

It's only a guess, but the cracking problem may be a combination of the locked in welding stress (as above), plus resonance stress, that is concent rated at that point.Also suspect is the tendency for the gear to try to bend spanwise at landing impact. Even slight spanwise movement a a certain vibratory frequency would tend to pull the welded seam apart after a number of cycles. Just like what takes place on a metal prop to cause lus failur is stress $x$ Time, with the nodes of the sine wave crossing at a critica point.
Whatever the cause, if any of you discover landing gear cracks please let us know without delav. If you make such a report it would ke of value to
 know as many of the pertinemted off unpaved strips and how much, total Yand prop used, whether operated off unpaved sinf with wheel and tire balan airframe time, who mfar any previous protlems with bolt shear where LG is bolted to the whether any previous problems with bol of engine shock mounts... in fact anything that might affect the gear by unusual vibration.

While it seems that these crack problems may well be only isolated incid ents, as we have several T-18s that have $2000-3000$ hours with no protlems but think most of these like BILL WARWICK's or DR. COTTINGHAM's hav the shorter gear, so the problemmay focus only on the longer gear

A few builders have made their own gear, some of them using gas welding Olonly, but I don't think it would be safe to assume that they would be immune from the problem just because they weren't Mr welded. Altho you can't easily inspect the back side of the gusset area, you shoula make regular and careful inspection of the front side, using a bright light land magnifying glass.
If any of you have opinions or suggestions on this subject. I'd appreciate hearing from you and if you don't want your opinions published I'11 certainly respect your wishes, or I'll simply say it is an anonymous on opinion. The first problem surface to review the information.

Comments on survey: I receired several constructive suggestions on what the survey form should have contained to be very valuable to a new builder. One such was. It would be most helptul if huilders would record what size gas lines are used, the AN no. of fittings, what kind of wheels and brakes used, whether brake cyls. have own reservoir, whether they used $N$ iloflow brake lines or the older type, what kind oil cooler used, where located, etc." I well understand new builders needing such A info desperately as they approach each new area, but rim not sure if Nost builders would take the time to fill out the survey. I guess one of Wthe facts of life are that most people strongly dislike filling out form of any kind and also have at aversion to writing. I had toyed with the Gincentive drawing again, but r rather doubt. if the respose would be wort the cost to our treasury what to you chink?

Perhaps many of you that are new builders and aren't familiar with all Gpruce 5 Specialty cataloque ( $\$ 4$ cost refundable) I'd recommend it Also TTONY BINGELIS' monthly article in SPORT AVIATION is also a veritable gold N mine of such info. His two books are also worth their weight in gold to O builder His monthly articles go back quite a few years. I sure wish She or EAA coula put all that info in book form. It'a cost you a small Afortune if you had all those articles xeroxed to put in a handy-dandy $\checkmark$ shop manual. I just can't say enough in the way of praise for Tony's skill and dedication in writing all those things and for thousands of ghours of research he's dore on them.
In addition to all the hours above that Tony has spent making life a lot easier for his fellow man. he's also spent a lot of his time making designee inspections and as a chapter officer. T would like to inauire of You as to how many of you are chapter Designees? I am in the process o
preparing a short series of articles for the EAA maqazines which will M preparing a short series of articles for the EAA magazines which will
( cover the history of the Desiqnee program, its purposes, its deficiencies Gover the history of the Desionee program, its purposes, its deficis in the planning stage for its future. I have a 2 inch high stack of copies ers sent to Ho in response again). and I'll be building tre are least EAA's primary function is education of the new builder, with all Oother functions secondary and an old story is a new or prospective builde (3oining EAA to get help and knowledge from experienced people in the Huilding of his project. Mary times he quietly drifts away because he does not find what he came for... and spent his money for. When we join $A A A$ we take on an unwitten contract that says that in exchange for the help and experience we receive now that down the line we"ll agree to repay that debt in kind. willing and not under complusion, so let's not forget we have a debt.
6 FOR SALE: Pete Bashford, Rt 1. Box 152 E, Morrisville, NC, 27560 put his $\mathrm{T}-18$ over on its back in a sandy field and slightiy sprung the fuselage but not much else damaged has and $10-360 \mathrm{eng} \mathrm{s} \mathrm{C} / \mathrm{s}$ hartzell (undamaged) and will sell all for $\$ 11.550$ or might part out. No time to rebuild.
bis phons is $919 / 467 / 0725$. Give him a call for further info.
STANDARD DISCLAIMER:As always, in past, present. f future newsletters, we would like to make you aware that information presented is only in the light of a clearing house of ideas, opinions, \& personal experience acc'ts \& Anyone using these ideas.opinions. etc DO Si AT THELR OUW DISCRETTON NW
 OND 15 WITHOCT PREOLSE ANAINST ANYONE.

T-18 NEWSLETTER \#G?
page
WET WING PLANS: Here's some good news that many of you have looked formard to for quite some time.....JOHN WALPON has finally completed the plans and manual fur the integral wing fuel tank and it"s GREAT:
ti has been proof read by several people and now is at the printers and will be available by the time you read this. It's about 25 pages of detailed how to do it, step by step, which includes several sheets of drawings. In case you haven't seen John's airplane at osh the past couple of years, he has all the extra fuel in the outer wings in the leading edge ' $D$ ' section, te has tested it thoroughly for over two years now and has never had any problem with it. He carries an extra 12 gals each wing ( 24 gal.) and with the normal 28 gal. fuselage tank this gives bim a 1000 mi, range with a $3 / 4 \mathrm{hr}$ reserve a gal. 8 hr burn. In fact, John says this is more fuel than you really need, as he can go to either coast with only one fuel stop and $53 / 4 \mathrm{hrs}$ is longer than most people want to sit without a pit stop. He further says you had better hav frmperfoam seat cushions, too. You can order from ken knowles or direct from John (5726 Boyce Springs Dr.. Houston. TX, 77066) or call him nights will go into the NL kitty. It would make a good investment to add to will go into the NL kitty. It would make a goodans even if you never use them. This particular writeup is on the cw. but it couldeasily be adapted in principle to the st'd T-18. FOR SALE: John Walton also told me that he still has a near perfect
Sensenich metal prop that has been vibration tested by Santa Monica prop shop and has about 100 hrs on it and is in excellent shape. It is just about ideal for a $125-135 \mathrm{hp}$ engine. On his 150 hp eng. it didn't have enough pitch to keep the engine from overturning. It is a $76 \mathrm{Em}-8-8-72$ up 4 sets of pin extractors that easily remove the main wing attach pins at the dihedral break. He has one set in his airplane and just sold another set, so has two left. It cost him $\$ 49$ per set and that's what he's asking for them. Has no plans to have more made after these gone. These extractors are not in the cW flans, so first come first served.

John also told me a little trick he used to make the standard wing tips conform to the NEW a irfoil shape. He makes a male plug of balsa for foam easily shaped) to fit the airfoil at the tip and then puts the tip over the top of it and applies heat to it from a heavy duty hair dryer. This softens the fiberglas so that it can be stretched and reformed to fit the male mold. In case you didn't appreciate this fact before fiberglas is
a thermonastic ar. by definition a thermoplastic will soften when it a thermoplastic ar. by definition a thermoplastic will soften when it is
heated. There is a imit to its movement, tho one way to do the above op'n is to protect the mold with Saran wrap and lay a 4" wide strip of
A op is to protect he mol with sat out resin. The two hal:es of the old tip are split apart and laid on top of the wetted strip ani taped in place After curing the strip. which is now holding the two hal.es together, more glas and resin are added on the outside at the "Gaf" to fill the depression and further bond the halves together, flush sarsing the excess after cure. The foam can be left in the tip if desired zor additional strength. Care should be taten when you instali any wingtip in order to get both tips on at the same angle with I installany wingtif in order to get both tips on at the same angle with

Here's a little tin from KEN BROCK that he showed me at his house: He takes a $10=12 \mathrm{ft}$, pieze of heavy twine around with him to do a check on how we:l someone's "-L8 flaps are mounted on their wing. Wrapping it around the wi:y from traisilg edge to LE back to the TE, holding it very tightly Q. at the back. a pezs:7 out at the wing tip can sight the underside and - topsise spanwise) steasily see if there is a gap or protrusion. slick! THLS AN EXCELLES WAY TO FIT YOUR FLAFS TO IUE WING.

## T-18 NEWSLETMER $\$ \neq 62$

page 6
PAUL KIRTK REPORT IN NL \#61: Several people have commented on the very excellent and professional report paulkirik did on his airplane in the T-18 Incictentally paul's T..18 is now out of the test phase and on May i3th will fly into the paint shop at Maanoketa, IA, to get all duded up for its OSH debut. Watoh for it.

RUSSELL ROSS, BOX $318 \mathrm{~A}, \mathrm{RR}$ 1, Sioux City, $1 \mathrm{~A}, 51108$, wants to know how
 what results? wants to use a $\mathrm{C} / \mathrm{S}$ prop on his $\mathrm{T}-18$, fut is concerned about what blade dia. (smallest) that they have used, as he's concerned about ground clearance with the st'd gear. (Gear extensions are a big help). He also has the following for SALE:.... Rattray cowl, prop extension. spinner, 2 fiberglas seats, 2 SL4N-20 mags sell of trade He wants 2 SLN-21 mags with gears and an oil cooler.

## From HANK STETGMGG:

## Dear Dick,

Good talking to you a week or so ago. Thanks much for sending newsletter \#59 so promptly. I an sure I am up to date on the newsletter dues, however, 1 am enclosing a check to ensure the possibility of winning the Radio. I wouldn't want to miss out on that.

On T-18 tajlwheels, some fellows are using a Maule trame and a Lang wheel and tire. A spacer is needed to center the whee.. This lashup Is considerably less costly than scott. Rosenhan master cylinders work beatifully. Many builders use $1 / 8$ inch NYto flow tubing with Swage loc fittings. Some fellows think $1 / 8$ inch tubing is too small, but believe me, this system works great. This system has proved entirely satisfactory on many T-18's for the past 10 years or more. Completely leak free and trouble free.
As for horizontal trim, 1 used the 67 Camero Rally Sport headlite motor recommended by Bob Dial. It's a simple bolt on unit, very dependable. Full travel is 15 seconss, which worked out beatifuily on N512S. Limit used wich iluminated in the iunding configuration After landing simply hold the trim switch unuse down" 6 or 7 seconds and you were in trim for your next take off. Another preflight trim check on N5I2S was 2 small gold diamond stick-ons placed on the fuselage skin at the point of full travel of the trim arms on each side. When the arms are nearly centered between the diamonds, take off trim is assured.

Thanks again, Dick, for a great job on the newsletters. We all appreciate them very much.

Sincerely,

Hank Steiginga
THANKS AGAIN HANK, FOR THOSE
Fine Tifs. We afpreciate.

- SOME FIRST FLIGHTS AND BUILDER EXPERIENCES:
- Fred Hartman: "My left wing stalls a few mph before the right wing. I'm wondering if my alant "war surplus" heated pitnt tube (about 10 " long and over an inch in dia, could trigger the stall earlier. Anyway I put a stall strip on the right wing to balance it out " Fred doesn't say whether or not it worked. Unless he was very lucky, probably not. Finding the exact location for the stall strip location takes a Lot of moving it around an eighth of an inch at a time up and down. as well as spanwise. to find the one and only spot to trigger flow separation at the proper very accurateiy and or you have found such of 025 protruding out about an inch from each leg and riveted to each leg of the angle works well. The protruding alum sheet is to have enough area to apply duct tape to secure it to the wing for testing.

DON DERBY FLIES HIS CW: Quite a few of the cWs are now flying

## First Flight <br> T-18-CV

Plans S/N 1423 Registration No N444DD Dete 1st Flisht 8/14/83
Name Doneld ت̈. Derjy Street 300 E. Tropicana Ave \#10
HCity Las Vegas, lievada 8910
Ph 702/736-3735
Engine Make Lycoming Model 0-320 D2A Hp 160 Const Cost 30 k pluss
Time 3 yrs 8 months Prop Hartzell Lenght $72^{\prime \prime}$ Constant Speed
Radios: King silver Crown Fuel Cap: 30 Gal
Modiflations: It was built exactly to plans except for dirferent seats
Wheel pants: Yes Gear Curfs: Yes
Flush Rivots: Yes

JIM HOCKENBROCK, in Dec, ' 84 said, "I now have over 100 trouble free hours on N22JH and have enjoyed every moment of it (isn'that what it's all about for all of us, Jim?).... I brought it home last week to paint and upholster it during the winter. I hope to have it finished by spring." Hope to see you at osh this summer, Jim. When it approaches list flight time comes the eternal question, shall I fly it awhile before I paint and upholster it?" Most pro painters say you li get a better paint job with less work in preparation. One can accumulate oil and oll vapor in a lot of places that also attract dirt and are harder to get at for a perfectly oil-free surface. A good scrubbing with Scotchbrite pads will get rid of the surface oxide and give better bonding. It would be interesting to learn how many of you have used what type of primer, whether you used Imron. Acrolyd, or some other of the newer paints, how they came touch up wit thep take without being ' 'sore thumb how much weight touch up whit they take without the airplane gained after painting...and after upholstery
HOW ABOUT YOUR THOUGHTS ON ABOVE QUESTIONS?
(MY AIRPLANE EAIAED 30 LBS WHEE PAINTED WITH S.W. ARROLYD

T-18 NEWSLETTER \#62
DTCK PENMAN FLIES: " (Copy of letter from Dick) (12/27/84)
Hear Dick, I had the pleasure of watching my T-18, serial \# 981, fly for the first time in May $15 .{ }^{\prime} 94$. I have spent the last nine years in
 of Ew. It has a zero time $0-320-\mathrm{D} 160 \mathrm{hp}$, a $66 \times 76$ Sensenich prop, and Thorp type cowl. The airplane is very clean and has a high cruise of i8s mph. The extra time I spent in wing and tail alignment paid off. The rudder tr tab. The only two problets that have showed up after the first flight wer brake pedal and trim tab adjustments (??)

Gary Copeland, fe llow T-18 pilot, made the first flight. It was very exciting and Gary made it look very easy. However, after watching Gary fly the aircraft it made me realize that if the builder has the slightes doubt about his flying skills, he should find someone qualified to make the initial flight. Altho many amateurs get away with it some do not: (AMEN, Dick. They let foolish eqo get in the way of good judgement) This absolutely is no time for people to be kidding themselves that they qualify as a test pilot.

I want to give special thanks to Gary Copeland for his time and energy in testing my plane and checking me out in it. Also, a thank you for Iry good friend, Bob Dial for all his expert help and advice Also, a
Nig thanks to you and Lu for producing the very informative $\mathrm{T}-18$ newsletter. . Sincerely. Dick Penman, 5918 Bordman Rd. Dryden, MI, 48428. ( 60 amps) and has been performing very well.'

OThank you, Dick, for a fine report and let me commend you for your super good judgement you displayed. A competent test pilot prethinks of his F alternatives and emergency procedures to cover every possible contingen from losing a spinner. an engine fire, a canopy flying off. a rudder pedal breaking in two, etc. ALL OF THOSE THINGS HAVE HAPPENED ON INITIAL TEST FLIGHTS. Here's another bad situation: An airplane with a badly twisted wing. a grossly inaccurate airspeed,and turning from base to fin a poorly prepared test pilot could accidentally stall the airplane, which will begin a spin at an altitude too low to recover. With the same airpl and pilot, visualize an oil line break at the oil cooler, which quickly covers the windscreen with oil. He can't see ahead and knows the engine will soon freeze and in his preoccupation with those problems he forget to fly the airplane, desperately calls the tower. and the airplane stall with little or no warning (which many do)..... Yes, Dick, you did the smart thing.
(9. DON WARNER, 7 Gaylord Dr. Wilton, Cr, 06397 called the turn when he said I was a better aircraft builder than a bookepper (I'm probably the world's worst, my wife says. I don't like it, don't have time for it. an with what he says is the Jenkins horseshoe motor mount ring ur the combination ause Jenk her front en lous 3/4" lower than a straight line drawn from the bottom of the windshield tothe top of the cowl fust behind the prop. He says he either ha s to live with it or buy another motor mount, as he doesn't know who still makes the "flat back" (non-dynafocal) motor mount these days. (Does Leisure Aircraft make them?) Can anybody help him? I know that the Rattr cowl requires considerable blending and fairing in to get the flow lines right, but it seems quite a few come out okay

## A Study Of Cruise

## Performance of The


inthoouction





 wher type arphathe wr arstance of the wome type


Evergone talk - .thout forthmance -... but lew take time to measure it acomateri. This is athame becalse
 might thank
The writers hase hern corresponanat tor about a gear. trading cruse pertornance data un wur T. 1 Bs
 plied to NistT buld by R. C. Ruemer. Manmowish formance has been yutstioned ty many theptues. So much data was s.athered. it was deceded in articte un the subject wis sproprate. and it is haped it will be
of interest to other than T-is buiders
Recording twit throthe arspeed and RPM is one sensitue way io masure mprovements in arplatie cleanimess and is prakably unversalty used by racing
enthusiasts. howerer the alternate methods described enthusiasss. how wer. the alternate methods descrited
in this article have been used by protessonal fight test engreess ber cars, and can be used to construct accurate crusse fersionmance charts.
caligration of instrumentation
Performance tieares taken directly frum uncalibrated Thus it is nexrisary to calbrate th
ments before mesning ful comparisons can be made. The calibration prowerfures are not complicated and stould be carried ous so any arplane for which retiable per The fundamentil sour
re: 1 indicator emar due to imperfections in the instru ment itself, and $=$ static pressure errors due to the location of the $\Delta$ merait static pressure vents position
errort. Ordarih thare are negligible errors in the pitot ram probe, as lers as it is clear of the propeller stream. Indicator errocy can be determined by "bench checking" the indicstoz using a homemade water mano meter of plaste subug as a pressure gauge (Table I
gives the 1 ASS witer manometer differental conver-
callerateo aibspeed vs phessure

| MPH | Inches of Water |
| :---: | :---: |
| \% | 1.2 |
| 60 | 1.7 |
| 70 | 242 |
| (1) | 3.16 |
| 40 | 3.98 |
| 160 | 493 |
| 110 | 6.04) |
| 120 | 7.10 |
| 130 | 835 |
| 140 | 9.68 |
| 150 | 11.15 |
| 160 | 1:271 |
| 170 | 14. |
| 180 | 16.1 |
| 190 | 1802 |
| 200 | 20.05 |
| 210 | 22.1 |

NOTE: The abow data is based on the "Compressible Bernoull Equations" - there beng approxi-
mately 1 difference at 200 mph from the nor mately 1 difference at 200 mph frum the nornatly used calibration assuming adeobatic flow

The manometer construction detals are not critical. A sumple "L"" shape segment of clear plastic tubing
 and to the phot inpur to the indicator through a T T tube fitting. The indtator should be left in the airplane - Just apply the presstire wo the arrplane ptot ram probe. A convenuent pressure source is an empty
plasitic soap botte connected to a tubing segment and squarshed by a "C" clamp. Any leaks in the system must be fixed before taking data. The diffrence in water helghts in the tubing legs shoutd be recorded for each
ation.
Once the instrument is calibrated the static port is the mann offender in arrsperd errors and it is common for the "commerctal buys" to have an anstrumented
test arphane with holes all over th trymg to find a lo. test arptane with holes all over if trying to tind a lo.
cation which will give close to free stredm" pressure under all conditions of flight. Since very few of us care to have holes ull over our airplane it is easier to arcept what we have and calbrate it of all the known
methods - trailing cone, ground course. Cower My by methods - trating cone, ground course, tower ny by
and pacing another airplane - the first one, trailing cone, is preferred for subsonic airplanes.
r-18 NEWSLETTER \#6? thalling cone. testing
The theory behind the trabing cone tust is that " smple long tute with severat hales around it, trated free From saplane flow inkerference. will give a perfect stid
tic pressure". We have tried tic pressure". We have-tried two rypes and got exactl
the same resulto with both of them The eagiest is con structed from fifty feet of sof ${ }^{3 / 6}$ " aqquarium "Tygon" phastic howe with a $4^{\prime \prime}$ plastic funnel saffety wired to the end Shove a tight fitting steel plug (such as a ball bear ing) into the end before attaching the funnel Three to clear through the tubing, staggering the tocations, and any burrs at the surface are cleaned off carefully with a razor blade using at small magmiying elass to get a clean jot. In swith hing statac sources a quick difficult to hold a constant arspeed while screwing in a "water type" valve.
Subme petple have had succese "pinching off" the to change static sources. This can becone an thter. esting exercise in manual dexterity:
Tape the tubing to the underpart or side of the fuselage and then to the tal spring. All the remaining the cockpit and "played out" on the runway before take"
off. It is naturally better to have the arplane ready $u$ go for a morming fight when the air is smooth. Data is thore easily taken with the armpane stabilized "on
the cone" first, at zero ratu of chimb, then guickly swith to the short, low volume, atrplane svstem The "rate of climb" instrument will require a small volume of arr to stabilize but unless verv long thes are in the air-
plane the error will be negheible. The change in indicated arspeed should be recorted at arspeceds through out the normal operating range of the arphane
The trathy cone data on Ngolill is shown in Figure

It is often denrathe to cruss pleterk the catbratoon priceuture to detuyt misuakes One alternate calibration nethed is the two way ground course
 erake grumad speed far zrue atrapeed. and convert back $4:$ a cillurated arrspeed mutiply TAS by vo from Figure '2, which is ermpared to the observed indicated Guding latmarks of koww distance. Using an and methin odnmeter to fromare is freeway or measurm landmatks wh a sectumal chart can meolve errors of

NisiTr was cross checked on the surveyed distance hold Ciereful Lmmarker revested a three male per hour diserepancy which was finally traced to the pitot ram probe. This is unusu:at but it is known that some "bulgy heated probes are more sensitive to angle of atuath
than ot straghe tuthe cot off square. Also ran "bleed" holes mav be twe large by mostake on some protes.
By atl means, dan' depend on the indicators in tore bought planes for accurate inlight comparison
In our expertence, the typeat heht planes airspeed ndicator should read "slow". "fast", and "Jack pot"" The price and ate of the airplatie dont seem to befac ors in accuraty, etther There are new $\$ 400,000$ air planes flying with indicators 5 ; off in cruise.
Aced rpan and mantiold pressure Hence ily on ob hate some calibrathon of the rannifold pressure gaug ind tachometer. Probably the most accurate calibra won can be obtaned at an instrument repatr shop.
tut tho isnit alwavs convenent The cachometer can he checked by using a fluorescent light as a poor man strobe hight during a nught "run up". At 1800 rpm the propeller will appear "stopped" since fuorescent hight mobile speedomerer thon tan also check the ver


48 MARCH 197

T-18 NEWSLETTER \#G2

quickly. The manifold pressure gauge can be roughly checked by noting the indicated pressure on the ground meter setung, less 1 'hg for each 1000 f. field elevation
getting cruise performance data points
With arrplane configuration noted in the log books and the prop and arrplane cleaned up we are now ready
to collect data. You would thank the technique of fy ing straight and level would not require much discus. ston for an experrenced pilot. but we feel obligated to bore you a hittle with the minute detalls in order to do's and more confidence in your data. We in list the

1. Donit try to get data without a rate of climb instra.
tent. Do "tap" the rate of climb before night to deter-
mine its actual zero poin
都
cold oil consumes extra horsepower).
Do get all data in smooth arr.
Do trim properly tbail centered.
Do allow several minutey for airspeed to stabilize
. Record:
a. Pressure altitude fset 29.92 on the altimeter)
b. Outside atr temperature
d. RPM
e. Indicated airspeed (last
2. Du fly at a wide range of altitudes and power

Don't teave test equipment on the airplane for
cruise tests
. Do lean the engine properily at altitude
We have found a tendency when trying to get data on an airplane to atways be in a rush to get back down on the ground, but a few more minutes and a few more
points permits you co throw away" the real bad ones points permits you to "throw away" the
and gives you more confidence in the data

## T-16 PEAFORMANCE COMPARISONS ANO

 PLOTTING THE DATATo begin. a set of theoretical drag curves on T-18s To begin. a set of theoretical drag curves on T. 18
having equivalent flat plate areas from 2.4 sq. ft. to 4.4
 curves for Multiplying

$V_{i}$ findicated Airspeed in MPHI)
Determining your own personal airplane drag polar is done by determining the actual true hp beigs used in
stabilized cruise fight, muttiplying by
'ot,
Vo density ratio for the altitude and temperature flown which can be obtained from Figure 21, and plotung against the corrected $\mathrm{V}_{i}$
Horsepower data can be obtanned from the engine manufacturer tabulated for different altiludes. An ex 5. This data can be plotted at various pressure altitude (exampie, Figure 61 and the HP selectud from the plot
The "true HP" is the $\mathrm{HP}_{\text {chart }} \times \sqrt{\frac{460-\mathrm{T}_{S}}{460-\mathrm{T}_{a}}}$
The "true HP" is the HP chart X fore what Altitude where T
and ${ }^{*} \mathrm{~T}_{3}=$ The Actual "O.A.T." Incidently, this turns and $\mathrm{T}_{\mathrm{a}}=$ The Actual "O.A.T.". Incidently, this turn normal. The resulting data should give a reasonably snoot plot following one of the calculated lines, regardless
of the altitude. Some variation might be attributable w changes in propeller efficiency
ad velocity for changes in weig a correction to HP ates things more than necessary For airplanes compliess than tork weight change, it is much splanes having lect it lat the higher cruse speeds the effect is neg sible!.
Superimposed on Figure 3 are data points of four different T. 18 s, The first one is the orignal published
estimate of the "basic" T-18, without canopy or pres. estimate of the "basic" T. 18 , without canopy or pres.
sure cowling. The second "isport" airplane was John sure cowling. The second "sport" airplane was john
Thorp's estimate of the improvements expected by adding canopy and pressure cowl. N 600 HH and N18TT are also plotted and are described in Table 11 and the photo-
graphs. raphs.

T-18 NEWGLETMER \#fin
page 12
C. Gear tute -- wheal pant junction fairings 12 mph. Anall rpmi increase
h. Lawer alderan giap covers i2 mph, small rpm in. creases'
Flush wing tips
Exhaust stack outle
No extermal venturs
No drager ventilatang scexper
Fured ethm antemna
B Fured etmo antemna

## scexpp

designed internal why tip VOR antema
A range performance manaal can be constracted from the thigh data bathered for Figure 3. See typlcal
curves. Fugure 4. Notice MPG and curves. Figure 4 . Nolice MPG, and range are constant derised easily trum the chart. It is simply

$$
\mathrm{MPG}=\frac{y_{1} \times 6}{15 . f \mathrm{f} \times \mathrm{BHP} \times \backslash m}
$$



| SPEED WITH 100 he INPUT at sealever | 136 mph | 168 mph |
| :---: | :---: | :---: |
| MILESGALLON at 140 min molcateg ahapsego | 20 m | 27 mbp |

1. Theoreticat: only patial thequis is used because ol propeller iype

Achiait tignt lest using recording barograpt

Fiyure 3 speaks volumes Notere for instance how with ino $\mathrm{HI}^{\prime}$ input the origmal arplane crusised at 12 mph and Nidfle will crutse at 16 mmph . John Thore has redined the T. 18 at 210 mplh. As cin be seen,
180 hp Tis . like Koemer's with it "free breathme olet giving the extra ram and possibyl "over reathing
 ine straight and level
The differencess between N6OOHH and N18TT , both adern sersions of the cratit are worth carefut serution Each matur tmprovement in NistT

15 TT was carefully andmg. putting wn the new tairner athd reflying course dentical coure withen 30 new lates. The observed chang the in las and RPM thas tave an atcurate indication of pred chanper, ethmating the eflect of atmosphere "ariation.
Betaw $1 s$ a hint of mprovements on NisTT which are alt belieded to centribute to the difference. Note
to the unnitiated the absence ol whed gants on Noicom: would appear to be the most ohsusus and umporiant dir terence howecer these tests on NISTT have athown only
3 mph difference,

SPECIAL POINTS OF IMPROVEMENT ON NIETT
a Canupy and windshield fit particularts at roll har
 E. G. Tube farmgs 1 k .10 mph .73 rpm talso on

Tal wheel cover $\mathbf{3} 3.4$ moh. 25 rpm
Cine upmaner fit



T-18 NEWSLETTER 162
The latge vartaten in MPG hatwren the (wa atr

 ably mosily attributable to the hagher compression ratio of the 180 HP engine.
Specific fuet consumption will sary womewhat with rpto manfoid pressure and alatude, hawever. its lung
as the power ti reasonably high, this effect is mammal In any case. the accuracy of the MiPd plats tis itn. pressive N1BTT has repeatedy demonstrated 37 MH on two way trips with fers of hour duration, by maln. taining 135 IAS for climb, cruse, and descent. With
carelul leaning this performance has been remarkably consisitent even meluding climbs to crutse above 12,000 feet. For those buiders with arplianes wher than T. 14s Wshang to compute a bamily of the enetcat curvem simbar
in Figure 3 Apperdix $A$ is included it the clase of the article giving the basic math and charts las any standard monoptane Airplanes with sarable meidence, canards. bplanes, etc., are beyond the scope of the smphit

## limitations of data

A. There are several pitialts in trimg to gather this type of data, the most important being propeller eflicuency. For this article. a cruse propelfer efficiency twith have lairly high pitched metal props of the same dtameter, even if the absolute efficiency is not exacty Ros': we can guess that their difference is not vary great. however, a wooden prop maght be at hite lower. by say loss in efficiency isee Figure 71 tion
page 13
Most l.ycomang tata is assumed to be taken with . crosisover system and at her number flught wists on


 horsepower (note. Fhure st If une makes the analnyy of a mufler to a smp. Re titer in medermace it wouk
 the $1^{2} \mathrm{R}$ leass in the thlters at course, a large maller would be difficult to installin the trom
An improvement in effective harsepawer can also be whesed by direetng the exhaust cases aft. rather
han down This is dur to the thrust avaluale in the hagh velserty extrausi llopetully we tan ket around to modifying 600HH sume dav and quat hime number on this
C. Engine Condition

Igntion tames. compresonan and cartheretion mus be normal to make cunpartoons trom one arphlane to
the same airnlane:
D. Miscellaneous
Center of sruvity varasums can result in 2.6 mph changes in top speed tor the $T$-18 thagher speeds for at
C.G.A. $A$. an change the data
Bugs on teithing edges coudd destrov any lammar flow present.
Trim tao settmes also aftect perlormanc
Engine accessorses tuel pumps. wae pumps, and generators all use some engme harsepower
In spte of the ethowe anomalies the whole data pather-
scheme work, pretty well and truch can be learned abgout small pertormance menrovements particularly
changes on the same arpplane.
B. C. Aoemer in Nigit. One of the most proven and B. $C$. Roemer in $N$ igle.


## CONCLUSIONS

kelarwely clean, mestum versums of the T.in, suth Hether's Nigit wall madieste bettet than du mph lowe sume farmas. such as Hendermonn Nifethin, wil Indacate more than 19.5 mph Undur the sume wad tums. he otiginal "baste" T. 18 without pransturn wot or Port" would indicate isk.
Our tests show that thesit performatice itaterrence can be accounted for by both streamamase . .nd engem dotatis The canopy and pressure cow d tide , tbout 33
 fostrms, and the tat wherl spring farms each atcount for 2.4 maph. The use of kower ateran bepp ensers add athout 3 mph and down ponting exhaust pupes cost Together the stated differences in boplith and 1 Hi account for about 10.13 mph of a 15 mph plus ditference In sea level top speed with 180 HP input. The remander fon be attributed to smaller detals such as the canopy eld junction, epoxy filled rivets. ec
In closing, we should pont out that anv small inn effects in fuel economy, and operitung costs at well as on cruse speed. For the T-18 an metease of only 10 horsepower - which doesn't have to he purchased mamtained. overhauled. carrsed by the arplane or fied Roc per gallon gasoline. Not a bad reward for in you think fying 1 hour free in every io 1 c a ond don




T-18 NEWSLETTER \#62

| $\begin{aligned} & \text { PRESS } \\ & \text { ALT. } \\ & \text { 10E0 } \\ & \text { FEET } \\ & \hline \end{aligned}$ | SID. ALT.TEMP. <br> ${ }^{-P^{*}}$ | .47 LBS/BPH/RR 100 HP - SSZ Rated APPROX. FUEL 7.8 Gal/hB RPM 6 MAN. PRESS. |  |  |  | $.46 \mathrm{LBS} / \mathrm{BHP} / \mathrm{HR}$ <br> 117 HP - 652 RATED approx. fuel 9 Gal/he RPM 6 MAN. PRESS |  |  |  | $3.47 \mathrm{LgS} / \mathrm{BHP} / \mathrm{HR}$ <br> 135 hP - 752 Rated APprox*: FUEL $10.6 \mathrm{GAL} / \mathrm{hr}$ RPH 5 MAN. PRESS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 2100 | 2200 | 2300 | 2400 | 2100 | 2200 | 2300 | 2400 | 2200 | 2300 | 2400 |
| SL | 59 | 20.9 | 20.3 | 19.8 | 19.3 | 23.3 | 22.7 | 22.1 | 21.5 | 25.1 | 24.4 | 23.9 |
| 1 | 55 | 20.7 | 20.1 | 19.6 | 19.1 | 23.1 | 22.4 | 21.8 | 21.3 | 24.8 | 24.2 | 23.6 |
| 2 | 52 | 20.4 | 19.8 | 19.3 | 18.8 | 22.8 | 22.1 | 21.6 | 21.0 | 24.6 | 24.0 | 23.4 |
| 3 | 48 | 20.2 | 19.6 | 19.1 | 18.6 | 22.5 | 21.9 | 21.3 | 20.8 | 24.3 | 23.7 | 23.2 |
| 4 | 45 | 19.9 | 19.3 | 18.9 | 18.4 | 22.3 | 21.6 | 21.1 | 20.6 | 24.0 | 23.5 | 22.9 |
| 5 | 41 | 19.7 | 19.1 | 18.7 | 18.2 | 22.0 | 21.4 | 20.9 | 20.3 | 23.8 | 23.2 | 22.7 |
| 6 | 38 | 19.5 | 18.9 | 18.4 | 18.0 | 21.8 | 21.1 | 20.6 | 20.1 | FT | 23.0 | 22.5 |
| 7 | 34 | 19.3 | 18.7 | 18.2 | 17.8 | 21.5 | 20.9 | 20.4 | 19.9 | -- | ${ }_{\text {r }}$ | 22.2 |
| 8 | 31 | 19.0 | 18.4 | 18.0 | 17.6 | 21.3 | 20.7 | 20.2 | 19.7 | -" | -- | FT |
| 9 | 27 | 18.8 | 18.2 | 17.8 | 17.4 | FT | 20.4 | 20.0 | 19.5 |  |  |  |
| 10 | 23 | 18.6 | 18.0 | 17.6 | 17.2 | -- | FI | 19.8 | 19.3 |  |  |  |
| 11 | 19 | 18.4 | 17.8 | 17.4 | 17.0 | -- | -- | 19.6 | 19.1 |  |  |  |
| 12 | 16 | 18.2 | 17.6 | 17.2 | 16.8 |  |  |  |  | $7 \sqrt{460+T_{5}}$ |  |  |
| 13 | 12 | FT | 17.4 | 17.0 | 16.7 |  |  |  |  | $n \mathrm{mp} \times \int_{40}$ |  |  |
| 14 | 9 | $\cdots$ | FT | 16.8 | 16.5 | $T_{s}=$ Std cemp |  |  |  |  |  |  |
| 15 | 5 | -- | -- | FT | 16.3 | I - Act temp |  |  |  |  |  |  |



T-18 NEWSLETTER \#62
page 15


GMAR sontsint ing trect

 ing exnaust stacks etc that coniribute to the high
speed of B. C Roentr s NibTT


ICourtery y $C$ Roemar
Talwheel taiting of NIBTT. An example of the extreme
eflon by \& R Roemer to lower the totat drag coefficient ellon by \& C Roemer to lower the total drag coefficient


Close up of landing gear leg tamnesy howatd henderson, ings and exhaust pip

## APPENDIXA

| b | $=$ Aspuct Ratis $=$ | BHIP | $=$ Brake Hiorstpower |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{L}}$ | = Wine Suan | Mrg | - Miles per pallon |
| $\mathrm{C}_{\mathrm{D}}$ | - Parashe drag coeffictent $=\frac{r}{s}$ | $S_{w}$ $S_{\text {fus }}$ | * Area of wand \% ifor this articlel fuselage frontal areat |
| $\mathrm{e}_{\mathrm{w}}$ | - Industis ctrak efficiency fastor for whole arplan. <br> = Induced drag effictency factor for wing | ${ }_{\mu}^{\mu}$ | - Efficiency Ifor this article propelley effi caencys <br> = Arrtensity ratio |
| D | Airplian drag | w |  |
| r | Flat ittite areas equanalent to mimmum drag at arplane | $\mathrm{V}_{1}$ | Finocity - true $=\mathrm{V}_{1} \mathrm{~V}^{\text {a }}$ |
| 10 | - Horcpuner |  |  |


| $\mathrm{V}_{i}$ s.f. | - Indicated veltaily tcorrexted armperd reat. 17: <br> $=$ Sipectic furi consumpten <br> $=.47 \mathrm{Hs}$ BIH' HR for 180 HP I. YO <br> $=.53$ lbs BLIPRIR for $150 \mathrm{HP}^{\prime} \mathrm{LYC}$ |
| :---: | :---: |
|  | $v_{\text {mph }} \times 88 \times 1$ |
|  | $550 \times 60 \times \mu$ |
| - | $=C_{\mathrm{D}_{2}} \times \mathrm{S} \times .00056 \mathrm{~V}^{\prime 2} \mathrm{mph}$ |
| $\mathrm{Cb}_{1}$ | $=C_{D P} \cdot C_{D_{1}}$ |
| $\mathrm{CD}_{1}$ | $=\frac{1}{\sigma \mathrm{Ae}}-\mathrm{C}_{\mathrm{L}}^{2}$ |
| $\mathrm{C}_{\mathrm{L}}$ | $=\frac{\mathrm{L}}{.00256 \mathrm{~V}^{2} \mathrm{~S}}$ |
| L | $\cong \mathrm{w}$ |
| ${ }^{\circ} \mathrm{O}$ | $=\frac{5}{8}$ |

CALCULATION OF $\frac{1}{\pi A e}$ FOR T. 18 from K.D. Wouds. Airplane Design, Vol. 1 , Page All9
Wing aspect ratio $=\frac{\left(20.8^{2}\right)^{2}}{86}=5$.


The preceding ${ }^{3}$ pages were rom the Marc! 77 issue of sport Aviation and were a result of the joint efforts of two highly regarded T-I8 builders. I think you will azree that this was an outstanding piece of work.
The past year I have had several new builders and owners of recentiy f purchased T-18s ask me if there were any guidelines available to properly A evaluate the T-18 performarce with accuracy. This article is one you of may want to seperate from the rest of the NL and insert with other such it get it

One $\mathrm{T}-18$ builder I talked with some time ago made a good suggestion about done of the things that would be most helpful to those just about to fly 4 their airplane and that was to have a SPECIPrC program to follow in the Gequired test period, with all data to be carefully recorded When most Qare asked what all they did in their test period they'll give you a sill A grin, which says they didn't do much except bore holes in the sky until they flew their time off. Naybe that's okay, as most $T-18 s$ won't have too In many surprises, but just remember there's a good reason that factories d pay good money for production test pilots. so dont assume every $\mathrm{T}-18$ is just like the next one. Not so. Every p-18 is different from every other S Every T-lB will fly just a iittle differenty from the rest and some will If fly a whole lot differentiy. Just because the FAA has given you the final Asign off, don't relax finding out all about your bird and say. "Well, now fim gonna just enjoy what I've spent all those hours of labor on."

Another FOR SALE: One of our local builders, Ken Hamilton, died last fall and his only heir, his mother, asked me to be a go-between in disposing of his project. Ken's aim was to build the fines T-18 that had ever been H built and had he lived he might have done just that. The fuselage is all $(7)$ riveted and on the gear. His stepfather, who worked for Douglas 30 years parts came from Ken Knowles and everything is there to finish the airplan from the firewall aft. The main spar caps have been machined but that is ali that has been done on the wing Everything has been inventoried and the cost was $\$ 7100$ which included plans (st'd wB $\mathrm{s}_{\mathrm{c}} \mathrm{CW}$ ) dynafocal eng mount, canopy \& windshield, seats, controls, tank, Cleveland wheels and brakes, all controls, a transponder, in fact, just about everything except upholstery, engine, and cowling. They will consider any reasonable offer and might consider selling peris. If you are sexious about it give me a call at 214/35l-4604 and T"llfill you in on details and pass on your bid

I-1B BUIEDER S LISTS: From time to time we get requests from builders for addresses of builders close to them, as some of them have never seen a T-18 in the flesh, a real live flying one that is. Also. some of them need alittle hands on help getting started, so a kindred soul is greatiy appreciated in those cases. Starting with this issue (NL \#62) we are publishing a complete list of paid up T-18 Builders and owners Associatio members that are computer sorted as to zip code. We are printing these pages fall size for better readability. We do not have phone numbers for but a fraction of the membership, but later this year when you renew you . the $1985-86$ listing we will publist a supplement in the next Nt of new members and later we'll purlish a list of former members hat have not renewed for one reason or another wish we could somehriw get a complete list of all the FAA reqistered T-iBs. Can any of you help???

T-18 NEWSLETTER \#62
Another Interruption: Since writing page \#l8 nearly two weeks has
zipped by. I had to take time out to do two big articles for the July issue of Sport Aviation, a short article for Sport Aviation, and a these assignments I have to drop everything and go like gangbusters.

ORA ShLE: Another local T-18 project just came open and it's such a good fuy that it cll probably go locally before this gets to any of you. This (standard) $T-18$ is a complete airframe for all pracrica? purposes. It was started by a Bell Helicopter employee and he has dcne professional type metal prop. There is an engine mount, too, cowling. It has a tank (in), windshield (in), instrument panel with engine instruments and basic VFR flite inst'ts, seats (in) not upholstered, all flite controls (in)
 ewpe, landing gear standard length, wheels, brakes, tires, Maule tailwheel and steel spring, horizontal tail (modified per ADs), fin, rudder, electric flaps (partially installed). Aircraft was started here in late 6os, using my templates copied from Thorp s. Original builder went thru divorce which tied project up about 6 or years. Later got Alzheimer's disease and sold locally a year ago. present owner's business commitments too much to have time to complete (has another airplane and only flew it 12 hrs. last year) His asking price is 55495 . Wife threatening bodily harm if he doesn't sell fe's out of town much of time, so call me anytime after 9 amcst and I'll answer any other q's you might have. as I know it well. (214/351-4604).

NEWSLETTERS 1thru 44: For newsletters in this range you need to send to LU SUNDERTAND, 5 Griffin Dr., Apalachin. NY, 13732 for them. He has a
 don't seem to be able to find time to answer.

While in the LAX area in March a friend of Ollie Smith came by Ken Brock's house and said ollie had decided to sell his T-18. 1 think his health was the reason. He has a fine $T-18$ that's well known there for several years. Don't know the price or other details. No address, either, as ollie has never joined our group. Ken could probably tell you how to reach him.

Ken Brock was supposed to send me a really good method of very accurately aligning the main gear wheels, using a cord, a couple of chairs, protractor, and a hand held computer. Most everyone these days say that you set your wheels with no toe in or out on a T-18. A little bit of misalignment will soon show up in tire wear. It will also tend to make the
T-18 a little bit too frisky on the ground. CG will also play a part.

The following pages dealing with the bending of leading edge radius in wing skins and other brake bending of sheet metal is from Don WINCHESTER, who lives here in the Dallas area and is foreman of the biggest manutact $r$ of stainless steel food machinery in the area. Don holds patents on a
number of food machinery items and is an artist when it comes to metal ne is of rood machinery items and is an artist when learned a lot of little tricks with metal from him and the wing skin
bit is one of them that's invaluable to know

-18 NEWSLETTER \#62
BENDING THE LEADING EDGE RAEIUS IN WING SKINS: This is one of the most important things the Einide Gan do that will determine how well the stall at a higher speed. but 21 so the stall onset will be sudden. . even vicious. Quite a few builders report one wing stalling ahead of the other. The most likely answer is one of the wing skins has a slightly tighter $L E$ Bend the radius -0 softly and up goes the drag, altho' it will have a gentler stall on. THAT wing. You should take the time to do it as perfect as you can. The LE radius MUST fit the airfoil contour. You may have purchased a pre-punshed skin from a supplier or perhaps you've laid it out yourself, carefilly trammelling it in all directions for squareness, but you still mist take extreme care to make the bend of the LE fall in the right place $\quad$ ith just the right amount of radius. Each of the 4 skins ( 6 on the $C W$ ) will require prorably as many as five or six of the gradual crushing type tends as you progressively move the pressure point forward, dis-assemble and re-check the radius, re-assemble, bend, etc
When you are doing it all yourself, there are a couple of ways to go. We'll look at the easiest way first. FIRST, assemble the ribs and spars. Then shear out several pieces of scrap metal about $3-4$ " wide $x$ about $5-6 "$ longe than the wing chord. Wi.th small clamps clamp tightly to the upper flange of the rib. Let the forwarde nd project out to locate the point where the part of forward as straight ine where this begins is the AFT END OF THE L E E OnDIUS Making the strip our of heavier gauqe material (i.e o40) makes it easier to determine this pint mark this point carefully on both the trip and rib Now mark the point where each spanwise rows of rivets will fall on the front and rear sears.

Now on the bottom side of tre ribs you want to basically do the same thing but now the airfoil shape m'st be temporarily changed to a SYMETRICAL airfoll in order to get the -E radius bent 1 the exact point to make the distances the same, top and tottom. This time we have to start at the front, at the AFT END OF THE LF RADIUS. Using the template for the top flange to get the proper distance from the LE radius point to the rear spar rivet line we find the point to locate a New line of spanwise rivet holes. This involves adding some extra length to the wing skins. with the excess later trimmed back the this NEW line of rivet holes will match the line After the skin is bent. This NEW line of rivet holes will match the ones above, so that when the two rows are clecoed together the proper place when the sheets are squezed together in the will be in the proper place when the sheets
classic method via $2 \times 4$ spanwise pressure.

To see this a little clearer, look at Dwg. \#547 (Wing profile). At the bottom of the ordinate table you'll see a figure for the Le radius. plus a $50 \%$ figure You'll also see a for the slope. which locates the center of a circle. Now take a compass or divider and set at this radius. Draw a circle and notice where the circle linepintersectsthe wing profile lines and these are the points we need for using the above procedure.

Using still another piece ce scrap(that will be about a $6^{\prime \prime}$ wide segment of a complete wing skin) lav out about 4 holes top and bottom and cleco together Now gradually make the squeeze bend and test it for fit at the LE, using a strong light tetind the rib as you eyeball it. A $6^{\prime \prime}$ wide strip will only offer a fraction of the restistance to bending a complete skin will, so GO EASY on the bend.

| 10180 | T-18 NEWSLETTER 1662 <br> page 21 <br> (cont'd) <br> You will find in bending a 4 ft . wide section of skin that the edges offer less resistance to bending than the central part. Some have found that adding a 1 h or 2 ft long $1 \times 4$ to the bottom of the 5 ft long $2 \times 4$ you use for bending will add enough extra pressure to the central part to make the bend more uniform along the entire 4 ft section. It's a good idea to add "stop" blocks on each end of the $2 \times 4$ to prevent accidental overbending. <br> If you overbend the leading edge you have just created an expenstve Piece of scrap... YOU cannot Un-bend the radius and save it, so go slow. TAKE TIME TO TAKE yT AfART AND Check how fuch you have formed it at EACH RTB STATION. <br> The following illustrations may help to visualize the results of either overbending or underbending: <br> in botity <br> fit the contour fresn't nose. Try this for vourself with a narrow strip of scrap.overbent it will result in skin being too short to reach rear spar rivet line |
| :---: | :---: |
|  | The above series by Don to be continued in NL \#63. We are out of space for this issue and also out of time (now in late May). |
|  |  |
|  | LU SUNDERLAND was here last week. Now has all 177 drawings for the s-18 completed (\$185). Part no.s remain the same. S-18 is the WB \& CW version of the T-18. Lu \& $I$ agreed we should reprint and update NLs 1-44, as the print quality is poor. We plan to make a book of ALL back NLs. Some of you could help if you would TYPE an index page of contents of ea NL. |
|  | DAVE BLANTON is moving to new quarters at Augusta, KS. He will have one or two versions of his Ford engine Cessnas at OSH 85 and will be doing demos. Maybe he will let you fly one if you are seriously interested. No definite info at the moment on that. Hard to really evaluate the $v-6$ eng. as he has too much pitch in prop and it doesn't get up to power until you hit $100-110 \mathrm{mph}$ with it. I've tried several times to get him to try another prop with less pitch. STEVE HAWLEY has one of the "Almost constant speed" props on his T-18 now (story on that in \#63) and maybe he ought to take a look at one of those. STEVE Likes IT (SeE Pix) <br> Again, gents, sorry to be so late getting this out. Will try my best to get \#63 out before OSH '85. Have to go to Houston to cover USA ' 85 next wk, then to Merced, then to LA again. plus a half dozen more stories to cover within 100 miles from DAL. I'm busy, yes, but it's a lot better than a rockin' chair, so I'm not complaining. (A DIRTY JoB, BCT Sucado HAS TO DO,1.) Rev ja, |

